

Test report No: 6185625.50

# **TEST REPORT**

# Electromagnetic Compatibility (EMC)

| Identification of item tested             | Magnetic Core Drill                                                                                                                                                                                                                                                           |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trademark                                 | AGP                                                                                                                                                                                                                                                                           |
| Model and /or type reference              | PMD3530G, PMD3530, PME3530, PMX3530, CM/705/1, CM/705/3, LM35G, LMG35, L35G, LG35, LG3530, L3530G, LM3530G, LMG3530, LPG35, LP35G, LP3530G, LPG3530, UNI3530, EM12, KB3001, ECO.35-F, RB30, MBA3530, 29-MD35-2, MAGPRO35, MD3530, MBREVOLP, MB351F, MBA3530, 35PMHPR, HFLP-35 |
| Ratings                                   | 110-120 Vac; 50-60 Hz; 1100 W;<br>220-240 Vac; 50-60 Hz; 1100 W;<br>Class I                                                                                                                                                                                                   |
| Test Laboratory / address                 | DEKRA Testing and Certification (Shanghai) Ltd. No.250, Jiangchangsan Road, Jing'an District, Shanghai, China                                                                                                                                                                 |
| Applicant / address                       | LEE YEONG INDUSTRIAL CO., LTD.  No.2, Kejia Rd., Douliu City, Yunlin County 64057, Taiwan                                                                                                                                                                                     |
| Test method requested, standard           | EN IEC 55014-1:2021<br>EN IEC 55014-2:2021<br>EN IEC 61000-3-2:2019+A1:2021<br>EN 61000-3-3:2013+A1:2019+A2:2021                                                                                                                                                              |
| Verdict Summary                           | IN COMPLIANCE                                                                                                                                                                                                                                                                 |
| Tested by (name / position & signature)   | Stefan Zhao Senior Project Manager                                                                                                                                                                                                                                            |
| Approved by (name / position & signature) | Wency Yang Technical Manager                                                                                                                                                                                                                                                  |
| Date of issue                             | 2024-04-15                                                                                                                                                                                                                                                                    |
| Report template No                        | TRF_EN55014-1_EN55014-2_EMC02 V1.1                                                                                                                                                                                                                                            |

# **INDEX**

|       |          |                                                             | page |
|-------|----------|-------------------------------------------------------------|------|
| Com   | peten    | ces and Guarantees                                          | 4    |
| Gene  | eral co  | onditions                                                   | 4    |
| Unce  | ertaint  | y                                                           | 4    |
| Envii | ronme    | ental conditions                                            | 5    |
| Poss  | sible te | est case verdicts                                           | 5    |
| Defir | nition   | of symbols used in this test report                         | 5    |
| Abbr  | eviati   | ons                                                         | 5    |
| Docu  | ıment    | History                                                     | 6    |
| Rem   | arks a   | and Comments                                                | 6    |
| usag  | e of s   | amples                                                      | 6    |
| 1     | Gen      | eral Information                                            | 7    |
|       | 1.1      | General Description of the Item(s)                          | 7    |
|       | 1.2      | Environment                                                 | 8    |
|       | 1.3      | Test Location                                               | 8    |
|       | 1.4      | Classification according to EN IEC 55014-2                  | 9    |
| 2     | Desc     | cription of Test Setup                                      | 10   |
|       | 2.1      | Operating mode(s) used for tests                            | 10   |
|       | 2.2      | Port(s) of the EUT                                          | 10   |
|       | 2.3      | Support / Auxiliary equipment / unit / software for the EUT | 10   |
|       | 2.4      | Test Configuration / Block diagram used for tests           | 11   |
| 3     | Verd     | ict summary section                                         | 12   |
|       | 3.1      | Standards                                                   | 12   |
|       | 3.2      | Deviation(s) from the Standard(s) / Test Specification(s)   | 12   |
|       | 3.3      | Overview of results                                         | 13   |
| 4     | Emis     | ssion Test Results                                          | 14   |
|       | 4.1      | Conducted disturbance voltage – Mains                       | 14   |
|       | 4.2      | Disturbance power (30 MHz – 300 MHz)                        | 23   |
|       | 4.3      | Harmonic current emissions                                  | 28   |
|       | 4.4      | Voltage changes, voltage fluctuations and flicker           | 33   |
| 5     | lmm      | unity Test Results                                          | 35   |
|       | 5.1      | Performance (Compliance) criteria                           | 35   |
|       |          | 5.1.1 Performance criteria related to immunity tests        | 35   |
|       |          | 5.1.2 Manufacturer defined performance criteria             | 35   |
|       | 5.2      | Monitored – Checked Functions / Parameters                  | 36   |

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

|   | 5.3    | Electrostatic discharge immunity             | .37 |
|---|--------|----------------------------------------------|-----|
|   | 5.4    | Electrical Fast Transients immunity          | .38 |
|   | 5.5    | Surge transient immunity                     | .39 |
|   | 5.6    | Injected currents (RF common mode) immunity  | .40 |
|   | 5.7    | Power supply interruptions and dips immunity | .41 |
| 6 | Identi | fication of the Equipment Under Test         | .42 |
| 7 | Anne   | x 1- Measurement Uncertainties               | .46 |
| 8 | Anne   | x 2 - Used Equipment                         | .47 |
| 9 | Anne   | x 3 - Test Photos                            | 49  |

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

### **COMPETENCES AND GUARANTEES**

DEKRA is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated in the report and it is based on the knowledge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

<u>IMPORTANT:</u> No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

### **GENERAL CONDITIONS**

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or Competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA.
- 5. The information provided by the customer in this report may affect the validity of the results, the test lab is not responsible for it.
- 6. The test results presented in this report relate only to the object tested.

#### UNCERTAINTY

For all measurements where guidance for the calculation of the instrumentation uncertainty of a measurement is specified in EN 55016-4-2 (CISPR 16-4-2), EN/IEC 61000-4 series or a product standard, the measurement instrumentation uncertainty has been calculated and applied in accordance with these standards.

Uncertainties have been calculated according to the DEKRA internal document. The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %. Refer to the Annex 1 for furter information.

**Report no.:** 6185625.50 Page 4 / 52

# **ENVIRONMENTAL CONDITIONS**

The climatic conditions during the tests are within the limits specified by the manufacturer for the operation of the EUT and the test equipment. The climatic conditions during the tests were within the following limits:

| Ambient temperature   | 15 °C – 35 °C    |
|-----------------------|------------------|
| Relative Humidity air | 30 % – 60 %      |
| Atmospheric pressure  | 86 kPa – 106 kPa |

If explicitly required in the basic standard or applied product / product family standard the climatic values are recorded and documented separately in this test report.

# POSSIBLE TEST CASE VERDICTS

| Test case does not apply to test object | N/A             |
|-----------------------------------------|-----------------|
| Test object does meet requirement       | P (Pass) / PASS |
| Test object does not meet requirement   | F (Fail) / FAIL |
| Not measured                            | N/M             |

### **DEFINITION OF SYMBOLS USED IN THIS TEST REPORT**

| ☐ Indicates that the listed condition, standard or equipment is applicable for this report/test/EUT.     |  |           |  |           |
|----------------------------------------------------------------------------------------------------------|--|-----------|--|-----------|
| ☐ Indicates that the listed condition, standard or equipment is not applicable for this report/test/EUT. |  |           |  |           |
| Decimal separator used in this report                                                                    |  | Comma (,) |  | Point (.) |

# **ABBREVIATIONS**

For the purposes of the present document, the following abbreviations apply:

EUT : Equipment Under Test

QP : Quasi-Peak
CAV : CISPR Average

AV : Average

CDN : Coupling Decoupling Network
SAC : Semi-Anechoic Chamber

OATS : Open Area Test Site

BW: Bandwidth

AM : Amplitude Modulation
PM : Pulse Modulation

HCP : Horizontal Coupling PlaneVCP : Vertical Coupling Plane

U<sub>N</sub> : Nominal voltageN/A : Not ApplicableN/M : Not Measured

**Report no.:** 6185625.50 Page 5 / 52

# **DOCUMENT HISTORY**

| Report nr. | Date       | Description   |
|------------|------------|---------------|
| 6185625.50 | 2024-04-15 | First release |

# **REMARKS AND COMMENTS**

The equipment under test (EUT) does meet the requirements of the stated standard(s)/test(s).

The test results relate only to the samples tested.

According to information provided by the manufacturer,

Model PME3530, PMX3530, CM/705/1, CM/705/3, LM35G, LMG35, L35G, LG35, LG3530, L3530G, LM3530G, LMG3530, LPG35, LP35G, LP3530G, LPG3530, UNI3530, EM12, KB3001, ECO.35-F, RB30, MBA3530, 29-MD35-2, MAGPRO35, MD3530, MBREVOLP, MB351F, MBA3530, 35PMHPR and HFLP-35 are same as model PMD3530 except model name.

After review, all tests were carried out on the following models PMD3530 (110-120 V), PMD3530 (220-240 V), PMD3530G (110-120 V) and PMD3530G (220-240 V). The test results stated in this report are also representative for all models.

# **USAGE OF SAMPLES**

Samples undergoing test have been selected by: LEE YEONG INDUSTRIAL CO., LTD.

Samples are composed of the following elements:

| Control Nº | Description         | Model                | Serial Nº  | Date of reception |
|------------|---------------------|----------------------|------------|-------------------|
| 6185625-1  | Magnetic Core Drill | PMD3530 (110-120 V)  | 202009     | 2023-11-12        |
| 6185625-2  | Magnetic Core Drill | PMD3530 (220-240 V)  | 2022047084 | 2023-11-12        |
| 6185625-3  | Magnetic Core Drill | PMD3530G (110-120 V) | 2023127001 | 2023-11-12        |
| 6185625-4  | Magnetic Core Drill | PMD3530G (220-240 V) | N/A        | 2023-11-12        |

# Supplemental information:









6185625-1 6185625-2 6185625-3 6185625-4

**Report no.:** 6185625.50 Page 6 / 52

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

# 1 **GENERAL INFORMATION**

| Descr  | iption of the item:             | Magr                           | netic Core Drill                                                                                                                         |                                 |                        |                         |                              |              |     |
|--------|---------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------|-------------------------|------------------------------|--------------|-----|
|        | I / Type number:                | PMD<br>LM35<br>LPG3<br>ECO     | 3530G, PMD3530, PME3530<br>5G, LMG35, L35G, LG35, LG<br>35, LP35G, LP3530G, LPG3<br>.35-F, RB30, MBA3530, 29-N<br>EVOLP, MB351F, MBA3530 | 3530, L3<br>530, UNI<br>MD35-2, | 3530G<br>3530,<br>MAGP | , LM35<br>EM12<br>PRO35 | 530G, L<br>, KB300<br>, MD35 | .MG35<br>01, |     |
| Trade  | mark:                           | AGP                            |                                                                                                                                          | , 00: 11:11                     |                        | 0                       |                              |              |     |
|        | facturer:                       | LEE                            | YEONG INDUSTRIAL CO., I                                                                                                                  | _TD.                            |                        |                         |                              |              |     |
|        |                                 | No.2                           | , Kejia Rd., Douliu City, Yunli                                                                                                          | n County                        | / 6405                 | 7, Taiv                 | wan                          |              |     |
| Facto  | ry:                             |                                | YEONG INDUSTRIAL CO., I                                                                                                                  |                                 | <u>'</u>               |                         |                              |              |     |
| · uoto | .,                              | No.2                           | , Kejia Rd., Douliu City, Yunli                                                                                                          | n Count                         | / 6405                 | 7. Taiv                 | wan                          |              |     |
|        |                                 | 1.10.2                         | ,                                                                                                                                        |                                 |                        | .,                      |                              |              |     |
| Rated  | power supply:                   |                                |                                                                                                                                          |                                 |                        | Refe                    | rence                        | ooles        |     |
| raico  | power suppry                    | Volta                          | ge and Frequency                                                                                                                         |                                 |                        | L2                      | L3                           | N            | PE  |
|        |                                 |                                | AC: 110-120 V; 50-60 Hz                                                                                                                  |                                 | $\boxtimes$            |                         |                              |              |     |
|        |                                 |                                | AC: 220-240 V; 50-60 Hz                                                                                                                  |                                 |                        | H                       |                              |              | H   |
|        |                                 |                                | AC:                                                                                                                                      |                                 |                        |                         |                              |              |     |
|        |                                 |                                | DC:                                                                                                                                      |                                 |                        |                         |                              |              |     |
| Rated  | Power:                          | Refe                           | r to page 1                                                                                                                              |                                 |                        |                         |                              |              |     |
| Clock  | frequencies:                    | < 15                           | MHz                                                                                                                                      |                                 |                        |                         |                              |              |     |
|        | parameters:                     | N/A                            |                                                                                                                                          |                                 |                        |                         |                              |              |     |
| Moun   | ting position:                  | ☐ Table top equipment          |                                                                                                                                          |                                 |                        |                         |                              |              |     |
|        |                                 | Wall/Ceiling mounted equipment |                                                                                                                                          |                                 |                        |                         |                              |              |     |
|        |                                 | Floor standing equipment       |                                                                                                                                          |                                 |                        |                         |                              |              |     |
|        |                                 |                                | Hand-held equipment Other:                                                                                                               |                                 |                        |                         |                              |              |     |
|        |                                 |                                | Other:                                                                                                                                   |                                 |                        |                         |                              |              |     |
|        |                                 |                                |                                                                                                                                          |                                 |                        |                         |                              |              |     |
|        | led use of the Equipment Unde   |                                | , ,                                                                                                                                      |                                 |                        |                         |                              |              | _   |
|        | pparatus as supplied for the te | st is a N                      | Magnetic Core Drill, intended                                                                                                            | for resid                       | ential,                | comm                    | nercial a                    | and lig      | ht- |
| indust | rial use.                       |                                |                                                                                                                                          |                                 |                        |                         |                              |              |     |
|        |                                 |                                |                                                                                                                                          |                                 |                        |                         |                              |              |     |
| No     | Module/parts of test item       |                                |                                                                                                                                          | Туре                            |                        |                         | Manuf                        | acture       | :r  |
|        | N/A                             |                                |                                                                                                                                          |                                 |                        |                         |                              |              |     |
|        |                                 |                                |                                                                                                                                          |                                 |                        |                         |                              |              |     |
|        |                                 |                                |                                                                                                                                          |                                 |                        |                         |                              |              |     |
| No     | Documents as provided by the    | ne appli                       | cant – Description                                                                                                                       | File na                         | me                     |                         | Issue                        | date         |     |
|        | N/A                             |                                |                                                                                                                                          |                                 |                        |                         |                              |              |     |
|        |                                 |                                |                                                                                                                                          |                                 |                        |                         |                              |              |     |
|        |                                 |                                |                                                                                                                                          |                                 |                        |                         |                              |              |     |
| Copy   | of marking plate:               |                                |                                                                                                                                          |                                 |                        |                         |                              |              |     |
|        | <del>ٽ</del> '                  |                                |                                                                                                                                          |                                 |                        |                         |                              |              |     |
| N/A    |                                 |                                |                                                                                                                                          |                                 |                        |                         |                              |              |     |

**Report no.:** 6185625.50 Page 7 / 52

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

# 1.2 **Environment**

The requirements and standards apply to equipment intended for use in:

| $\boxtimes$ | Residential (domestic) environment.          |
|-------------|----------------------------------------------|
| $\boxtimes$ | Commercial and light-industrial environment. |
|             | Industrial environment.                      |

# 1.3 **Test Location**

| Test Location         | SERTC Testing Center Co., Ltd No. 230, Section 2, Fengshi Road, Fengyuan District, Taichung City, Taiwan |
|-----------------------|----------------------------------------------------------------------------------------------------------|
| Date (receive sample) | 2023-11-12                                                                                               |
| Date (start test)     | 2023-11-12                                                                                               |
| Date (finish test)    | 2024-03-19                                                                                               |

**Report no.:** 6185625.50 Page 8 / 52

# 1.4 Classification according to EN IEC 55014-2

The standard EN IEC 55014-2 is subdivided in five categories. For each category, specific immunity requirements are formulated.

| <u>Category I:</u> equipment containing no electronic control circuitry. <u>Examples:</u> Appliances, tools and toys that contain no electronic control circuits and only electromechanical components such as switches, thermostats, brush motors, induction motors, heating elements, lighting toys containing only batteries and LED.  Electric circuits consisting of passive components (such as radio interference suppression capacitors or inductors, mains transformers and mains frequency rectifiers) are not considered to be electronic control circuitry.                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Category II:</u> mains operated equipment containing electronic control circuitry with no clock frequency higher than 15 MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Category III: battery operated equipment not included in Category I.  Examples: Appliances, tools and toys powered by batteries and that include a microprocessor to provide a selection of functions.  NOTE The assignment to Category III is independent of the clock frequency.  This category also includes equipment provided with rechargeable batteries, which can be charged, directly or indirectly, from the mains. Accordingly, this equipment shall also be subjected to the test requirements for mains operated equipment but only when testing the charging function.  If the equipment can operate its intended functions when connected, directly or indirectly to the mains, then it is not battery operated. Accordingly, it shall be classified as Category II, Category IV or Category V, as applicable, and subjected to the corresponding test requirements when in mains operation. |
| <u>Category IV:</u> mains operated equipment containing electronic control circuitry with a highest clock frequency greater than 15 MHz but lower than or equal to 200 MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <u>Category V:</u> mains operated equipment containing electronic control circuitry with a highest clock frequency greater than 200 MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| equency: Fundamental frequency of any signal used in the device, excluding those which are solely de integrated circuits (IC).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

**Report no.:** 6185625.50 Page 9 / 52

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

# 2 **DESCRIPTION OF TEST SETUP**

# 2.1 Operating mode(s) used for tests

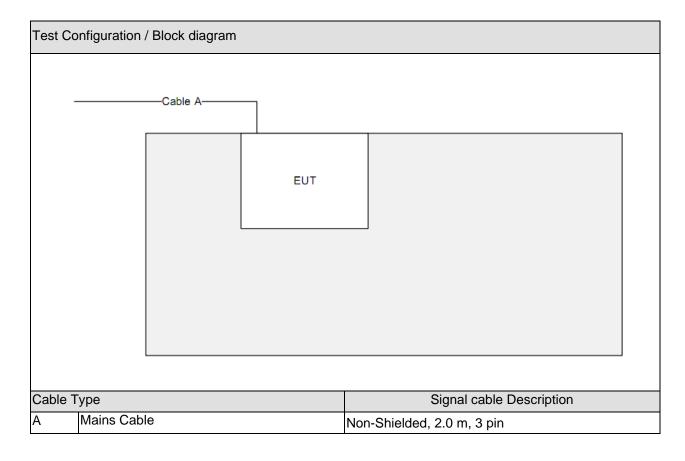
During the tests the following operating mode(s) has(have) been used.

| Operating mode            | Operating mode description        | Used for testing |             |  |
|---------------------------|-----------------------------------|------------------|-------------|--|
| mode                      | Operating mode description        | Emission         | Immunity    |  |
| 1                         | Continuous operation without load | $\boxtimes$      | $\boxtimes$ |  |
| 2                         |                                   |                  |             |  |
| Supplemental information: |                                   |                  |             |  |

# 2.2 Port(s) of the EUT

|                           | Connected to / Termination | Cable                       |                      |          |  |
|---------------------------|----------------------------|-----------------------------|----------------------|----------|--|
| Port name and description |                            | Length used during test [m] | Attached during test | Shielded |  |
| AC Mains port             | AC Main                    | 2.0                         | $\boxtimes$          |          |  |
|                           |                            |                             |                      |          |  |
|                           |                            |                             |                      |          |  |
|                           |                            |                             |                      |          |  |
|                           |                            |                             |                      |          |  |
| Supplemental information: |                            |                             |                      |          |  |

# 2.3 Support / Auxiliary equipment / unit / software for the EUT


The EUT has been tested with the following auxiliary equipment / unit / software:

| Auxiliary equipment / unit / software | Type / Version | Manufacturer | Supplied by |  |  |  |
|---------------------------------------|----------------|--------------|-------------|--|--|--|
| N/A                                   |                |              |             |  |  |  |
|                                       |                |              |             |  |  |  |
|                                       |                |              |             |  |  |  |
|                                       |                |              |             |  |  |  |
| Supplemental information:             |                |              |             |  |  |  |
|                                       |                |              |             |  |  |  |

**Report no.:** 6185625.50 Page 10 / 52

# 2.4 Test Configuration / Block diagram used for tests

The following test setup / configuration / block diagram has been used during the tests:



**Report no.:** 6185625.50 Page 11 / 52

# 3 **VERDICT SUMMARY SECTION**

This chapter presents an overview of standards and results. Refer to the next chapters for details of measured test results and applied test levels.

# 3.1 Standards

| Standard          | Year    | Description                                                                    |  |
|-------------------|---------|--------------------------------------------------------------------------------|--|
| EN IEC 55014-1    | 2021 1) | Requirements for household appliances, electric tools and similar apparatus -  |  |
|                   |         | Part 1: Emission.                                                              |  |
| EN 55016-2-1      | 2014    | Methods of measurement of disturbances and immunity - Conducted                |  |
| +A1               | 2017    | disturbance measurements.                                                      |  |
| EN 55016-2-2      | 2011    | Methods of measurement of disturbances and immunity - Measurement of           |  |
|                   |         | disturbance power.                                                             |  |
| EN 55016-2-3      | 2017    | Methods of measurement of disturbances and immunity - Radiated disturbance     |  |
| +A1               | 2019    | measurements.                                                                  |  |
| EN 55032          | 2015    | Electromagnetic compatibility of multimedia equipment - Emission requirements  |  |
| EN IEC 61000-3-2  | 2019 1) | Limits for harmonic current emissions (equipment input current ≤ 16 A per      |  |
| +A1               | 2021 1) | phase).                                                                        |  |
| EN 61000-3-3      | 2013    | Limitation of voltage changes, voltage fluctuations and flicker in public low- |  |
| +A1               | 2019 1) | voltage supply systems, for equipment with rated current ≤ 16 A per phase and  |  |
| +A2               | 2021 1) | not subject to conditional connection.                                         |  |
| EN IEC 55014-2    | 2021 1) | Requirements for household appliances, electric tools and similar apparatus -  |  |
|                   |         | Part 2: Immunity – Product family standard.                                    |  |
| EN 61000-4-2      | 2009    | Electrostatic discharge immunity test.                                         |  |
| EN 61000-4-3      | 2006    |                                                                                |  |
| +A1               | 2008    | Radiated, radio-frequency, electromagnetic field immunity test.                |  |
| +A2               | 2010    |                                                                                |  |
| EN 61000-4-4      | 2012    | Electrical fast transient/burst immunity test.                                 |  |
| EN 61000-4-5      | 2014    | Curae immunity teet                                                            |  |
| +A1               | 2017    | Surge immunity test.                                                           |  |
| EN 61000-4-6      | 2014    | Immunity to conducted disturbances, induced by radio-frequency fields.         |  |
| EN IEC 61000-4-11 | 2020    | Voltage dips, short interruptions and voltage variations immunity tests.       |  |

<sup>1)</sup> Not harmonized yet.

# 3.2 Deviation(s) from the Standard(s) / Test Specification(s)

The following deviation(s) was / were made from the published requirements of the listed standards: N/A.

**Report no.:** 6185625.50 Page 12 / 52

#### 3.3 Overview of results

| EMISSION TESTS – EN IEC 55014-1                                 |                          |         |        |  |  |
|-----------------------------------------------------------------|--------------------------|---------|--------|--|--|
| Requirement – Test case                                         | Basic standard(s)        | Verdict | Remark |  |  |
| Conducted disturbance at mains terminals (150 kHz – 30 MHz)     | EN 55016-2-1             | PASS    |        |  |  |
| Conducted disturbance at wired network ports (150 kHz – 30 MHz) | EN 55016-2-1<br>EN 55032 | N/A     | See 2) |  |  |
| Disturbance power (30 MHz – 300 MHz)                            | EN 55016-2-2             | PASS    |        |  |  |
| Radiated disturbance (30 MHz – 1000 MHz)                        | EN 55016-2-3             | N/A     | See 4) |  |  |
| Radiated disturbance (1 GHz – 6 GHz)                            | EN 55016-2-3             | N/A     | See 3) |  |  |
| Discontinuous disturbance (clicks) on AC power leads            | EN IEC 55014-1           | N/A     | See 1) |  |  |

# Supplementary information:

- 1) Exemptions from click measurements applicable (clause 5.4.3).
- 2) The test is not applicable as the EUT does not have associated ports / wired network ports.
- 3) The highest internal frequency of the EUT is less than 108 MHz.
- 4) According to clause 4.3.4.2 procedure (a) of the CISRP 14-1 standard the EUT is deemed to comply in the frequency range from 300 MHz to 1000 MHz without further measurements.

| EMISSION TESTS – EN IEC 61000-3-2, EN 61000-3-3   |                   |         |        |  |  |  |
|---------------------------------------------------|-------------------|---------|--------|--|--|--|
| Requirement – Test case                           | Basic standard(s) | Verdict | Remark |  |  |  |
| Harmonic current emissions                        | EN IEC 61000-3-2  | PASS    |        |  |  |  |
| Voltage changes, voltage fluctuations and flicker | EN 61000-3-3      | PASS    |        |  |  |  |
| Supplementary information:                        |                   |         |        |  |  |  |

| IMMUNITY TESTS – EN IEC 55014-2                          |                   |      |        |  |  |  |
|----------------------------------------------------------|-------------------|------|--------|--|--|--|
| Requirement – Test case Basic standard(s) Verdict Remark |                   |      |        |  |  |  |
| Electrostatic discharge                                  | EN 61000-4-2      | PASS |        |  |  |  |
| Radio-frequency electromagnetic fields                   | EN 61000-4-3      | N/A  | See 1) |  |  |  |
| Fast transients                                          | EN 61000-4-4      | PASS |        |  |  |  |
| Surge transient                                          | EN 61000-4-5      | PASS |        |  |  |  |
| Injected currents (radio-frequency common mode)          | EN 61000-4-6      | PASS |        |  |  |  |
| Voltage dips and short interruptions                     | EN IEC 61000-4-11 | PASS |        |  |  |  |

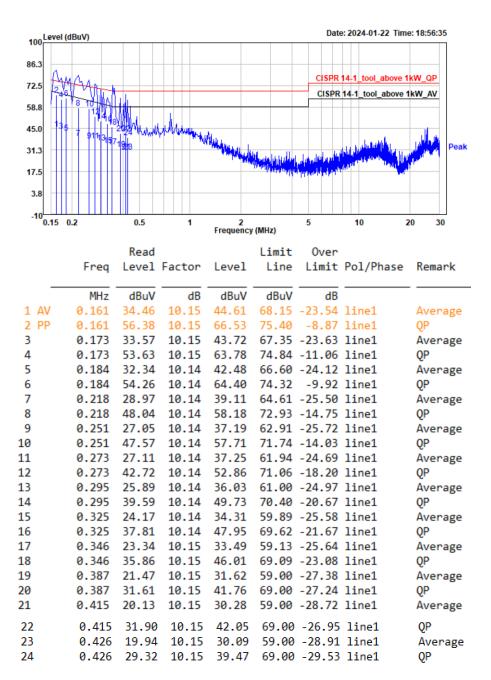
# Supplementary information:

**Report no.:** 6185625.50 Page 13 / 52

<sup>1)</sup> The equipment is classified as category II equipment according to EN 55014-2, no radio-frequency electromagnetic fields immunity test is applicable.

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555


# 4 EMISSION TEST RESULTS

| 4.1 Conducted disturbance voltage – Mains                            |              |                                                                                                                                                  |                 |                            |       | T: PASS                 |  |
|----------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------|-------|-------------------------|--|
| Standard EN IEC 55014-1                                              |              |                                                                                                                                                  |                 |                            |       |                         |  |
| Basic standard                                                       |              | 5016-2-1                                                                                                                                         |                 |                            |       |                         |  |
| Dasic standard                                                       | LIVO         | 3010-2-1                                                                                                                                         |                 |                            |       |                         |  |
| Limits – Tools                                                       |              |                                                                                                                                                  | -               |                            |       |                         |  |
| Frequency range [MHz]                                                | Liı          | mit: QP [dB(μV) <sup>1]</sup> ]                                                                                                                  | Limit: /        | AV [dB(μV) <sup>1]</sup> ] | IF BW | Detector(s)             |  |
| 0.15 - 0,35                                                          |              | 66 – 56 <sup>2)</sup>                                                                                                                            | 59              | - 46 <sup>2)</sup>         | 9 KHz | QP, CAV                 |  |
| 0,35 - 5,0                                                           |              | 56                                                                                                                                               | 46              |                            | 9 KHz | QP, CAV                 |  |
| 5,0 - 30                                                             |              | 60                                                                                                                                               | 50              |                            | 9 KHz | QP, CAV                 |  |
| 1) At the transition frequency, t<br>2) The limit decreases linearly |              |                                                                                                                                                  |                 |                            |       |                         |  |
| ☐ Rated power be                                                     | low 700 W    |                                                                                                                                                  | Limits as above |                            |       |                         |  |
| Rated power be                                                       | tween 700 ar | nd 1000 W                                                                                                                                        | Limits +4 dB    |                            |       |                         |  |
| Rated power about                                                    | ove 1000 W   |                                                                                                                                                  | Limits +1       | 0 dB                       |       |                         |  |
| Performed measuremen                                                 | nts          |                                                                                                                                                  |                 |                            |       |                         |  |
| Scan range (0,9 – 1,1 U                                              | N) 🗆         | 198 – 264 V <sub>AC</sub>                                                                                                                        |                 | 207 – 253 V                | AC 🗵  | 110/220 V <sub>AC</sub> |  |
| Tested terminal(s) / port                                            |              | AC mains input pow                                                                                                                               | /er ⊠           | N 🗵                        | L1    | L2                      |  |
|                                                                      |              | DC mains input pow                                                                                                                               | ver 🗌           | Positive (+)               |       | Negative (-)            |  |
| Voltage – Mains [V]                                                  | 110 \        | 110 Vac / 220 Vac                                                                                                                                |                 |                            |       |                         |  |
| Frequency – Mains [Hz]                                               | 60 H         | 60 Hz / 50 Hz                                                                                                                                    |                 |                            |       |                         |  |
| Test method applied                                                  |              |                                                                                                                                                  |                 |                            |       |                         |  |
|                                                                      |              | Voltage probe                                                                                                                                    |                 |                            |       |                         |  |
| Test setup                                                           |              | Table top                                                                                                                                        |                 | Artificial hand applied    |       |                         |  |
| ☐ Floor standing                                                     |              | Floor standing                                                                                                                                   | Other:          |                            |       |                         |  |
| Refer to the Annex 3 for test setup pho                              |              |                                                                                                                                                  | photo(s).       |                            |       |                         |  |
| Operating mode(s) used                                               | d Mode       | Mode 1                                                                                                                                           |                 |                            |       |                         |  |
| Remark                                                               | For the      | For the level of continuous disturbance is not steady, the reading on the measuring receiver is observed for at least 15 s for each measurement. |                 |                            |       |                         |  |

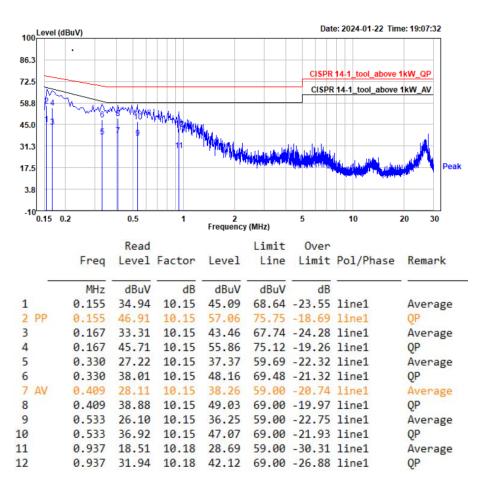
**Report no.:** 6185625.50 Page 14 / 52

|                                  | Measurement data                          | Port under test        | AC mains power input |  |  |
|----------------------------------|-------------------------------------------|------------------------|----------------------|--|--|
|                                  | Operating mode / voltage / frequency used | Mode 1/ 110 Vac/ 60 Hz |                      |  |  |
| Result for sample no.: 6185625-1 |                                           |                        |                      |  |  |

#### Line



#### Remark:


- 1. "orange color" means this data is the worst emission level.
- 2. Emission Level = Reading Level + Correct Factor (Correct Factor = LISN Insertion Loss + Cable Loss).
- 3. Margin = Emission Level Limit.

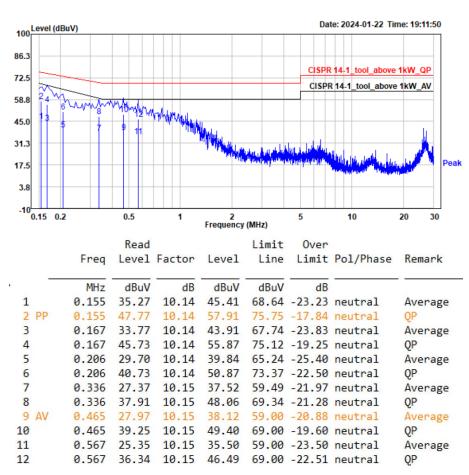
| Measurement data                                                                                                                                                         | Port u                     | nder test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AC mains power input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|
| Operating mode / voltage / frequer                                                                                                                                       | ncy used during            | g the test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mode 1/ 110 Vac/ 60 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |  |  |
| Result for sample no.: 6185625-1 Neutral                                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |
| 100 Level (dBuV)                                                                                                                                                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date: 2024-01-22 Tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e: 19:03:43   |  |  |
|                                                                                                                                                                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |
| 86.3                                                                                                                                                                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CISPR 14-1_tool_above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1kW OP        |  |  |
| 72.5                                                                                                                                                                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CISPR 14-1_tool_above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |  |  |
| 58.8                                                                                                                                                                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G.G. K. I. I. (CO.)_GBOTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |  |  |
| 45.0                                                                                                                                                                     | Mil. Ha J. Washing.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |
| 45.0                                                                                                                                                                     | 21                         | Mahaha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | مريانان لفنان بريانان الله                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | بالانتظار     |  |  |
| 31.3                                                                                                                                                                     | 1                          | The second secon |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak          |  |  |
| 17.5                                                                                                                                                                     |                            | = 1 - Marily   Mari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | diction to the state of the sta |               |  |  |
| 3.8                                                                                                                                                                      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |
| 3.0                                                                                                                                                                      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |
| -10<br>0.15 0.2                                                                                                                                                          | 0.5 1                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 30         |  |  |
|                                                                                                                                                                          |                            | Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |
| Fnon                                                                                                                                                                     | Read<br>Level Factor       | Lim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pamanle       |  |  |
| Freq                                                                                                                                                                     | Level Factor               | revel ri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ne Limit Pol/Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Remark        |  |  |
| MHz                                                                                                                                                                      | dBuV dB                    | dBuV dBu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uV dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |  |  |
| 1 AV 0.161                                                                                                                                                               | 34.68 10.14                | 44.82 68.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15 -23.33 neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Average       |  |  |
| 2 PP 0.161                                                                                                                                                               | 56.01 10.14                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QP            |  |  |
| 3 0.173                                                                                                                                                                  | 33.86 10.14                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35 -23.35 neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Average       |  |  |
| 4 0.173                                                                                                                                                                  | 53.89 10.14                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34 -10.81 neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QP            |  |  |
| 5 0.189                                                                                                                                                                  | 32.06 10.14                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25 -24.05 neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Average       |  |  |
| 6 0.189<br>7 0.201                                                                                                                                                       | 52.97 10.14<br>31.00 10.14 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07 -10.96 neutral<br>56 -24.42 neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QP<br>Average |  |  |
| 8 0.201                                                                                                                                                                  | 49.20 10.14                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 -14.26 neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OP            |  |  |
| 9 0.212                                                                                                                                                                  | 30.22 10.14                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92 -24.56 neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Average       |  |  |
| 10 0.212                                                                                                                                                                 | 44.62 10.14                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14 -18.38 neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QP            |  |  |
| 11 0.223                                                                                                                                                                 | 29.70 10.14                | 39.84 64.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31 -24.47 neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Average       |  |  |
| 12 0.223                                                                                                                                                                 | 45.03 10.14                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72 -17.55 neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QP            |  |  |
| 13 0.247                                                                                                                                                                 | 28.05 10.14                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13 -24.94 neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Average       |  |  |
| 14 0.247                                                                                                                                                                 | 43.76 10.14                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39 -17.99 neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QP            |  |  |
| 15 0.269                                                                                                                                                                 | 26.63 10.14                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 -25.33 neutral<br>17 -17.91 neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Average       |  |  |
| 16 0.269<br>17 0.314                                                                                                                                                     | 24.39 10.14                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27 -25.74 neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QP<br>Average |  |  |
| 18 0.314                                                                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39 -23.16 neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OP            |  |  |
|                                                                                                                                                                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29 -25.64 neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Average       |  |  |
| 20 0.341                                                                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 -19.91 neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QP            |  |  |
| 21 0.444                                                                                                                                                                 | 19.79 10.15                | 29.94 59.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00 -29.06 neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Average       |  |  |
| 22 0.444                                                                                                                                                                 | 29.60 10.15                | 39.75 69.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00 -29.25 neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QP            |  |  |
| Remark:                                                                                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |
| 1. " orange color " means this data                                                                                                                                      | is the worst e             | mission level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |
| 1. " orange color " means this data is the worst emission level.  2. Emission Level – Reading Level + Correct Factor (Correct Factor – LISN Insertion Less + Cable Less) |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |
| 2. Emission Level = Reading Level + Correct Factor (Correct Factor = LISN Insertion Loss + Cable Loss).                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |
| 3. Margin = Emission Level – Limit                                                                                                                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |
|                                                                                                                                                                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |
|                                                                                                                                                                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |
|                                                                                                                                                                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |
|                                                                                                                                                                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |

| Measurement data                         | Port under test        | AC mains power input |
|------------------------------------------|------------------------|----------------------|
| Operating mode / voltage / frequency use | Mode 1/ 220 Vac/ 50 Hz |                      |

Result for sample no.: 6185625-2

#### Line




#### Remark:

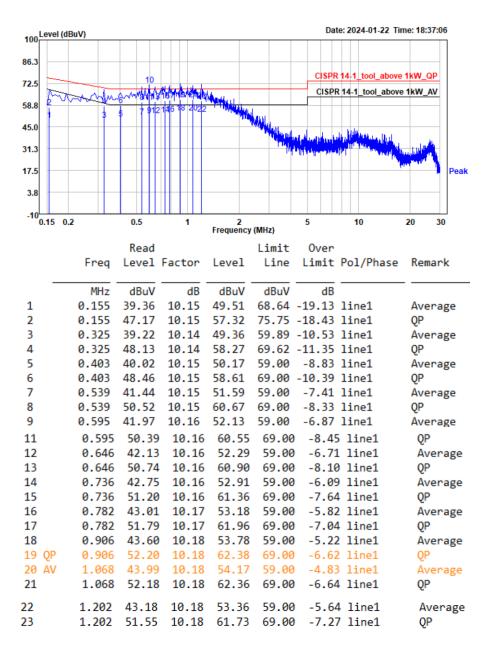
- 1. " orange color " means this data is the worst emission level.
- 2. Emission Level = Reading Level + Correct Factor (Correct Factor = LISN Insertion Loss + Cable Loss).
- 3. Margin = Emission Level Limit.

| Measurement data                                          | Port under test | AC mains power input   |  |  |
|-----------------------------------------------------------|-----------------|------------------------|--|--|
| Operating mode / voltage / frequency used during the test |                 | Mode 1/ 220 Vac/ 50 Hz |  |  |
|                                                           |                 |                        |  |  |

Result for sample no.: 6185625-2

### Neutral




- 1. " orange color " means this data is the worst emission level.
- 2. Emission Level = Reading Level + Correct Factor (Correct Factor = LISN Insertion Loss + Cable Loss).
- 3. Margin = Emission Level Limit.

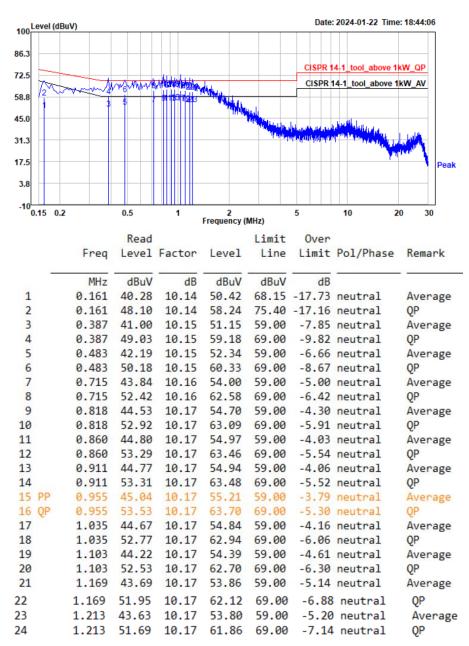
| Remark |  |
|--------|--|

| Measurement data                                          | ort under test | AC mains power input   |
|-----------------------------------------------------------|----------------|------------------------|
| Operating mode / voltage / frequency used during the test |                | Mode 1/ 110 Vac/ 60 Hz |

Result for sample no.: 6185625-3

#### Line




- 1. "orange color" means this data is the worst emission level.
- 2. Emission Level = Reading Level + Correct Factor (Correct Factor = LISN Insertion Loss + Cable Loss).
- 3. Margin = Emission Level Limit.

| Remark |  |
|--------|--|
|--------|--|

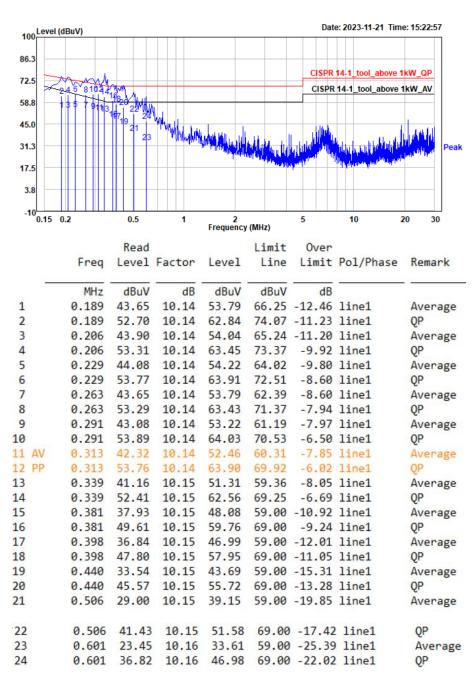
| Measurement data                          | Port under test        | AC mains power input |  |  |  |  |
|-------------------------------------------|------------------------|----------------------|--|--|--|--|
| Operating mode / voltage / frequency used | Mode 1/ 110 Vac/ 60 Hz |                      |  |  |  |  |
| Result for sample no.: 6185625-3          |                        |                      |  |  |  |  |

Result for sample no.: 6185625-3

#### Neutral



- 1. " orange color " means this data is the worst emission level.
- 2. Emission Level = Reading Level + Correct Factor (Correct Factor = LISN Insertion Loss + Cable Loss).
- 3. Margin = Emission Level Limit.


| Remark |  |
|--------|--|

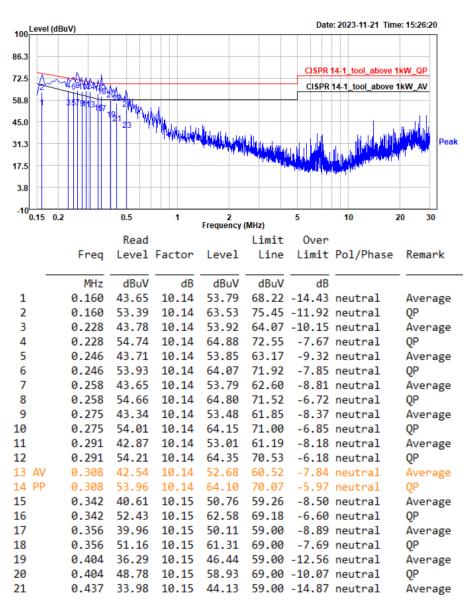
No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

|   | Measurement data                          | Port under test        | AC mains power input |  |  |  |
|---|-------------------------------------------|------------------------|----------------------|--|--|--|
|   | Operating mode / voltage / frequency used | Mode 1/ 220 Vac/ 50 Hz |                      |  |  |  |
| Ī | Result for sample no.: 6185625-4          |                        |                      |  |  |  |

#### Line




- 1. " orange color " means this data is the worst emission level.
- 2. Emission Level = Reading Level + Correct Factor (Correct Factor = LISN Insertion Loss + Cable Loss).
- 3. Margin = Emission Level Limit.

| _      |   |   |   |    |
|--------|---|---|---|----|
| Re     | m | 1 | r | _  |
| $\neg$ |   | а | ш | n. |

| Measurement data                                          | Port under test | AC mains power input   |
|-----------------------------------------------------------|-----------------|------------------------|
| Operating mode / voltage / frequency used during the test |                 | Mode 1/ 220 Vac/ 50 Hz |

Result for sample no.: 6185625-4

#### Neutral

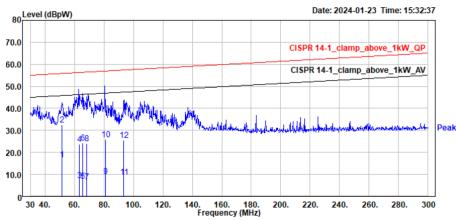


- 1. " orange color " means this data is the worst emission level.
- 2. Emission Level = Reading Level + Correct Factor (Correct Factor = LISN Insertion Loss + Cable Loss).
- 3. Margin = Emission Level Limit.

| Remark |  |
|--------|--|

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555


| 4.2 Disturbance po                       | VERDICT                                         | : PASS             |                 |             |  |  |  |
|------------------------------------------|-------------------------------------------------|--------------------|-----------------|-------------|--|--|--|
|                                          |                                                 |                    |                 |             |  |  |  |
| Standard                                 | EN IEC 55014-1                                  |                    |                 |             |  |  |  |
| Basic standard                           | EN 55016-2-2                                    |                    |                 |             |  |  |  |
| Limits – Tools                           |                                                 |                    |                 |             |  |  |  |
| Frequency range [MHz]                    | Limit: QP [dB(pW)]                              | Limit: AV [dB(pW)] | IF BW           | Detector(s) |  |  |  |
| 30 - 300                                 | 45 - 55 1)                                      | 35 - 45 1)         | 120 KHz         | QP, CAV     |  |  |  |
|                                          | Margir                                          | 1                  |                 |             |  |  |  |
| 200 - 300                                | 0 - 10 1)                                       |                    | 120 KHz         | QP, CAV     |  |  |  |
| 1) The limit increases linearly with the | frequency.                                      |                    |                 |             |  |  |  |
| Rated power below 7                      | 00 W                                            |                    | Limits as above | /e          |  |  |  |
| Rated power betweer                      | Rated power between 700 and 1000 W Limits +4 dB |                    |                 |             |  |  |  |
| Rated power above 1                      | Rated power above 1000 W Limits +10 dB          |                    |                 |             |  |  |  |
| Performed measurements                   |                                                 |                    |                 |             |  |  |  |
| Performed measurements                   |                                                 |                    |                 |             |  |  |  |

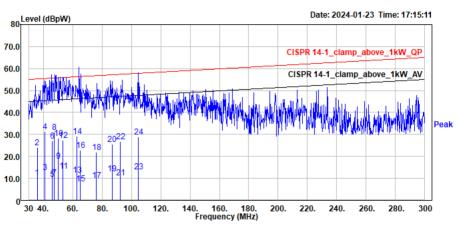
| Port(                           | Port(s) under test                       |                                                                           |                                  |                       |  |       |         |     |             |                         |
|---------------------------------|------------------------------------------|---------------------------------------------------------------------------|----------------------------------|-----------------------|--|-------|---------|-----|-------------|-------------------------|
|                                 |                                          |                                                                           |                                  | Load                  |  |       | Control |     |             |                         |
| Other:                          |                                          |                                                                           | Other:                           |                       |  |       | Other   | :   |             |                         |
|                                 |                                          |                                                                           | ,                                |                       |  |       |         |     |             |                         |
| Scan                            | range (0,9 - 1,1 <i>U</i> <sub>N</sub> ) |                                                                           | 198 -                            | - 264 V <sub>AC</sub> |  | 207 – | - 253 V | 'AC | $\boxtimes$ | 110/220 V <sub>AC</sub> |
| Volta                           | ge – Mains [V]                           | 110 \                                                                     | /ac / 2                          | 20 Vac                |  |       |         |     |             |                         |
| Frequ                           | uency – Mains [Hz]                       | 60 Hz                                                                     | 60 Hz / 50 Hz                    |                       |  |       |         |     |             |                         |
|                                 |                                          |                                                                           |                                  |                       |  | 1     |         |     |             |                         |
| Test                            | setup                                    | $\boxtimes$                                                               | Table top                        |                       |  |       |         |     |             |                         |
|                                 |                                          |                                                                           | Other:                           |                       |  |       |         |     |             |                         |
|                                 |                                          | Refer to the Annex 3 for test setup photo(s).                             |                                  |                       |  |       |         |     |             |                         |
|                                 | litions for exemption                    | "Limits" reduced by "Margin" applied and passed                           |                                  |                       |  |       |         |     |             |                         |
| from measurements above 300 MHz |                                          | $\boxtimes$                                                               | Maximum clock frequency < 30 MHz |                       |  |       |         |     |             |                         |
|                                 |                                          |                                                                           |                                  |                       |  |       |         |     |             |                         |
| Oper                            | ating mode(s) used                       | ) used Mode 1                                                             |                                  |                       |  |       |         |     |             |                         |
| Remark                          |                                          | For the level of continuous disturbance is not steady, the reading on the |                                  |                       |  |       |         |     |             |                         |
|                                 |                                          | measuring receiver is observed for at least 15 s for each measurement.    |                                  |                       |  |       |         |     |             |                         |

**Report no.:** 6185625.50 Page 23 / 52

| Measurement data                          | Port under test        | AC mains power input |  |  |  |
|-------------------------------------------|------------------------|----------------------|--|--|--|
| Operating mode / voltage / frequency used | Mode 1/ 110 Vac/ 60 Hz |                      |  |  |  |
| Desult for complete a CASECSE 4           |                        |                      |  |  |  |

Result for sample no.: 6185625-1




|      |        | Read   |        |       | Limit | 0ver   |           |         | APos |
|------|--------|--------|--------|-------|-------|--------|-----------|---------|------|
|      | Freq   | Level  | Factor | Level | Line  | Limit  | Pol/Phase | Remark  |      |
| -    | MHz    | dBpW   | dB     | dBpW  | dBpW  | dB     |           |         | cm   |
| 1 AV | 51.480 | -6.84  | 23.43  | 16.59 | 45.78 | -29.19 |           | Average | 0    |
| 2 PP | 51.480 | 9.18   | 23.43  | 32.61 | 55.78 | -23.17 |           | QP      | 0    |
| 3    | 63.415 | -16.16 | 23.52  | 7.36  | 46.22 | -38.86 |           | Average | 170  |
| 4    | 63.415 | 0.29   | 23.52  | 23.81 | 56.22 | -32.41 |           | QP      | 170  |
| 5    | 65.470 | -16.05 | 23.08  | 7.03  | 46.29 | -39.26 |           | Average | 150  |
| 6    | 65.470 | 1.15   | 23.08  | 24.23 | 56.29 | -32.06 |           | QP      | 150  |
| 7    | 68.350 | -15.91 | 22.45  | 6.54  | 46.40 | -39.86 |           | Average | 70   |
| 8    | 68.350 | 1.46   | 22.45  | 23.91 | 56.40 | -32.49 |           | QP      | 70   |
| 9    | 80.875 | -13.57 | 22.81  | 9.24  | 46.86 | -37.62 |           | Average | 250  |
| 10   | 80.875 | 3.12   | 22.81  | 25.93 | 56.86 | -30.93 |           | QP      | 250  |
| 11   | 93.520 | -14.33 | 23.06  | 8.73  | 47.33 | -38.60 |           | Average | 180  |
| 12   | 93.520 | 2.39   | 23.06  | 25.45 | 57.33 | -31.88 |           | QP      | 180  |

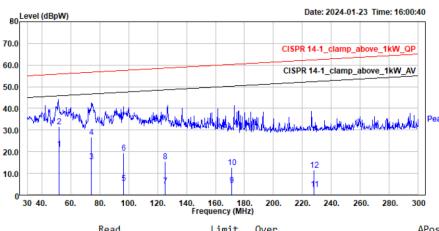
# Remark:

- 1. "orange color" means this data is the worst emission level.
- 2. Emission Level = Reading Level + Correct Factor (Correct Factor = LISN Insertion Loss + Cable Loss).
- 3. Margin = Emission Level Limit.

| Measurement data                          | Port under test   | AC mains power input   |
|-------------------------------------------|-------------------|------------------------|
| Operating mode / voltage / frequency used | d during the test | Mode 1/ 220 Vac/ 50 Hz |

Result for sample no.: 6185625-2




|      |         | Read   |        |       | Limit | 0ver   |           |         | APos |
|------|---------|--------|--------|-------|-------|--------|-----------|---------|------|
|      | Freq    | Level  | Factor | Level | Line  | Limit  | Pol/Phase | Remark  |      |
| _    | MHz     | dBpW   | dB     | dBpW  | dBpW  | dB     |           |         | cm   |
| 1    | 35.757  | -14.44 | 24.75  | 10.31 | 45.19 | -34.88 |           | Average | 230  |
| 2    | 35.757  | -0.64  | 24.75  | 24.11 | 55.19 | -31.08 |           | QP      | 230  |
| 3    | 40.908  | -11.38 | 24.28  | 12.90 | 45.38 | -32.48 |           | Average | 200  |
| 4 PP | 40.908  | 6.98   | 24.28  | 31.26 | 55.38 | -24.12 |           | QP      | 200  |
| 5    | 46.131  | -13.88 | 23.71  | 9.83  | 45.58 | -35.75 |           | Average | 120  |
| 6    | 46.131  | 3.32   | 23.71  | 27.03 | 55.58 | -28.55 |           | QP      | 120  |
| 7    | 47.322  | -13.22 | 23.58  | 10.36 | 45.62 | -35.26 |           | Average | 170  |
| 8    | 47.322  | 7.30   | 23.58  | 30.88 | 55.62 | -24.74 |           | QP      | 170  |
| 9 AV | 50.259  | -5.35  | 23.31  | 17.96 | 45.73 | -27.77 |           | Average | 90   |
| 10   | 50.259  | 4.97   | 23.31  | 28.28 | 55.73 | -27.45 |           | QP      | 90   |
| 11   | 53.454  | -10.28 | 23.63  | 13.35 | 45.85 | -32.50 |           | Average | 130  |
| 12   | 53.454  | 3.74   | 23.63  | 27.37 | 55.85 | -28.48 |           | QP      | 130  |
| 13   | 63.036  | -12.15 | 23.61  | 11.46 | 46.20 | -34.74 |           | Average | 130  |
| 14   | 63.036  | 5.50   | 23.61  | 29.11 | 56.20 | -27.09 |           | QP      | 130  |
| 15   | 65.130  | -15.56 | 23.16  | 7.60  | 46.28 | -38.68 |           | Average | 70   |
| 16   | 65.130  | -0.33  | 23.16  | 22.83 | 56.28 | -33.45 |           | QP      | 70   |
| 17   | 76.062  | -13.36 | 22.50  | 9.14  | 46.69 | -37.55 |           | Average | 250  |
| 18   | 76.062  | -0.70  | 22.50  | 21.80 | 56.69 | -34.89 |           | QP      | 250  |
| 19   | 86.736  | -10.88 | 23.09  | 12.21 | 47.08 | -34.87 |           | Average | 200  |
| 20   | 86.736  | 2.40   | 23.09  | 25.49 | 57.08 | -31.59 |           | QP      | 200  |
| 21   | 92.526  | -12.73 | 23.12  | 10.39 | 47.30 | -36.91 |           | Average | 60   |
| 22   | 92.526  | 3.62   | 23.12  | 26.74 | 57.30 | -30.56 | 5         | QP      | 60   |
| 23   | 104.856 | -9.58  | 22.77  | 13.19 | 47.75 | -34.56 | 5         | Average | 320  |
| 24   | 104.856 | 6.17   | 22.77  | 28.94 | 57.75 | -28.81 | L         | QP      | 320  |

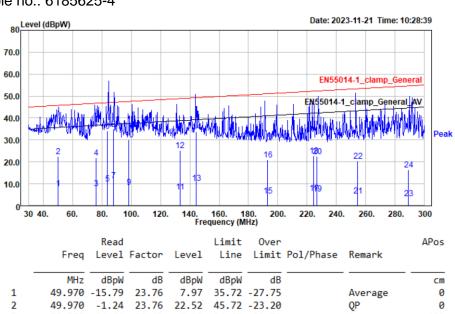
- 1. " orange color " means this data is the worst emission level.
- 2. Emission Level = Reading Level + Correct Factor (Correct Factor = LISN Insertion Loss + Cable Loss).
- 3. Margin = Emission Level Limit.

| _ |   |   |   |    |   |
|---|---|---|---|----|---|
| к | A | m | а | rI | < |

| Measurement data                          | Port under test   | AC mains power input   |
|-------------------------------------------|-------------------|------------------------|
| Operating mode / voltage / frequency used | d during the test | Mode 1/ 110 Vac/ 60 Hz |
| Description assemble to a CARCOC O        |                   |                        |

Result for sample no.: 6185625-3




|      |         | Kead   |        |       | Limit | Over   |           |         | APOS |
|------|---------|--------|--------|-------|-------|--------|-----------|---------|------|
|      | Freq    | Level  | Factor | Level | Line  | Limit  | Pol/Phase | Remark  |      |
|      | MHz     | dBpW   | dB     | dBpW  | dBpW  | dB     |           |         | cm   |
| 1 AV | 51.759  | -2.20  | 23.47  | 21.27 | 45.79 | -24.52 |           | Average | 120  |
| 2 PP | 51.759  | 8.13   | 23.47  | 31.60 | 55.79 | -24.19 |           | QP      | 120  |
| 3    | 74.022  | -6.76  | 22.35  | 15.59 | 46.61 | -31.02 |           | Average | 0    |
| 4    | 74.022  | 4.27   | 22.35  | 26.62 | 56.61 | -29.99 |           | QP      | 0    |
| 5    | 96.441  | -17.40 | 22.91  | 5.51  | 47.44 | -41.93 |           | Average | 70   |
| 6    | 96.441  | -3.38  | 22.91  | 19.53 | 57.44 | -37.91 |           | QP      | 70   |
| 7    | 125.210 | -18.59 | 22.77  | 4.18  | 48.51 | -44.33 |           | Average | 0    |
| 8    | 125.210 | -7.15  | 22.77  | 15.62 | 58.51 | -42.89 |           | QP      | 0    |
| 9    | 171.230 | -17.26 | 21.75  | 4.49  | 50.21 | -45.72 |           | Average | 125  |
| 10   | 171.230 | -9.02  | 21.75  | 12.73 | 60.21 | -47.48 |           | QP      | 125  |
| 11   | 228.240 | -18.97 | 21.74  | 2.77  | 52.32 | -49.55 |           | Average | 0    |
| 12   | 228.240 | -10.14 | 21.74  | 11.60 | 62.32 | -50.72 |           | QP      | 0    |
|      |         |        |        |       |       |        |           |         |      |

#### Remark:

- 1. "orange color" means this data is the worst emission level.
- 2. Emission Level = Reading Level + Correct Factor (Correct Factor = LISN Insertion Loss + Cable Loss).
- 3. Margin = Emission Level Limit.

| Measurement data                          | Port under test   | AC mains power input   |
|-------------------------------------------|-------------------|------------------------|
| Operating mode / voltage / frequency used | d during the test | Mode 1/ 220 Vac/ 50 Hz |
| Decult for comple po : 6105625 4          |                   |                        |

Result for sample no.: 6185625-4



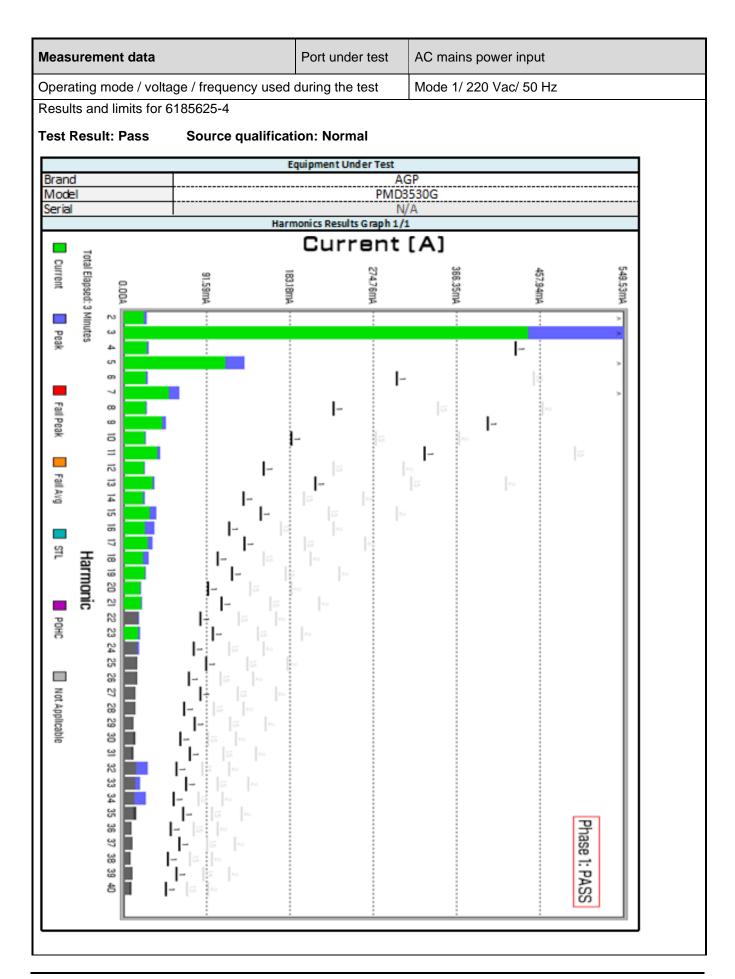
|      | Freq    | Level  | Factor | Level | Line  | Limit  | Pol/Phase | Remark  |     |
|------|---------|--------|--------|-------|-------|--------|-----------|---------|-----|
| -    | MHz     | dBpW   | dB .   | dBpW  | dBpW  | dB     |           |         | cm  |
| 1    | 49.970  | -15.79 | 23.76  | 7.97  | 35.72 | -27.75 |           | Average | 0   |
| 2    | 49.970  | -1.24  | 23.76  | 22.52 | 45.72 | -23.20 |           | QP      | 0   |
| 3    | 75.975  | -14.44 | 22.42  | 7.98  | 36.68 | -28.70 |           | Average | 150 |
| 4    | 75.975  | -0.38  | 22.42  | 22.04 | 46.68 | -24.64 |           | QP      | 150 |
| 5    | 83.600  | -12.48 | 22.63  | 10.15 | 36.97 | -26.82 |           | Average | 110 |
| 6    | 83.600  | 11.38  | 22.63  | 34.01 | 46.97 | -12.96 |           | QP      | 110 |
| 7 AV | 88.080  | -11.16 | 22.75  | 11.59 | 37.13 | -25.54 |           | Average | 70  |
| 8 PP | 88.080  | 12.20  | 22.75  | 34.95 | 47.13 | -12.18 |           | QP      | 70  |
| 9    | 98.150  | -14.39 | 22.78  | 8.39  | 37.50 | -29.11 |           | Average | 60  |
| 10   | 98.150  | 7.28   | 22.78  | 30.06 | 47.50 | -17.44 |           | QP      | 60  |
| 11   | 133.170 | -16.18 | 22.55  | 6.37  | 38.80 | -32.43 |           | Average | 0   |
| 12   | 133.170 | 2.59   | 22.55  | 25.14 | 48.80 | -23.66 |           | QP      | 0   |
| 13   | 144.360 | -11.84 | 22.17  | 10.33 | 39.22 | -28.89 |           | Average | 35  |
| 14   | 144.360 | 11.46  | 22.17  | 33.63 | 49.22 | -15.59 |           | QP      | 35  |
| 15   | 192.825 | -16.84 | 21.55  | 4.71  | 41.01 | -36.30 |           | Average | 0   |
| 16   | 192.825 | -0.63  | 21.55  | 20.92 | 51.01 | -30.09 |           | QP      | 0   |
| 17   | 224.595 | -15.66 |        | 5.90  | 42.19 | -36.29 |           | Average | 0   |
| 18   | 224.595 |        |        | 22.79 | 52.19 | -29.40 |           | QP      | 0   |
| 19   | 226.625 | -16.11 | 21.58  | 5.47  | 42.26 | -36.79 |           | Average | 0   |
| 20   | 226.625 | 0.90   | 21.58  | 22.48 | 52.26 | -29.78 |           | QP      | 0   |
| 21   | 254.310 | -17.33 | 21.84  | 4.51  | 43.29 | -38.78 |           | Average | 110 |
| 22   | 254.310 | -1.32  | 21.84  | 20.52 | 53.29 | -32.7  | 7         | QP      | 110 |
| 23   | 289.220 | -18.42 | 21.81  | 3.39  | 44.58 | -41.19 | 9         | Average | 70  |
| 24   | 289.220 | -5.34  | 21.81  | 16.47 | 54.58 | -38.1  | 1         | QP      | 70  |

- 1. " orange color " means this data is the worst emission level.
- 2. Emission Level = Reading Level + Correct Factor (Correct Factor = LISN Insertion Loss + Cable Loss).
- 3. Margin = Emission Level Limit.

| _ |   |   |    |   |   |  |
|---|---|---|----|---|---|--|
| R | e | m | ıa | r | k |  |

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555


| 4.3 Harmonic cui                                     | rent ei | missions          |           |                    |              | VERDICT:                    | PASS        |
|------------------------------------------------------|---------|-------------------|-----------|--------------------|--------------|-----------------------------|-------------|
|                                                      |         |                   |           |                    |              |                             |             |
| Standard                                             | EN IE   | C 61000-3-2       |           |                    |              |                             |             |
| Exlusions                                            |         | Arc welding eq    | uipmen    | t intended for p   | rofessiona   | l use.                      |             |
| (For these categories of                             |         | System(s) with    | nomina    | al voltage(s) les  | s than 220   | V <sub>AC</sub> (line-to-ne | eutral).    |
| equipment, limits are not specified in the EN 61000- |         | Equipment with    | n rated p | power of ≤ 75 V    | V (other tha | an lighting equi            | pment).     |
| 3-2 standard)                                        |         | Professional ed   | quipmer   | nt with total rate | ed power >   | 1 kW.                       |             |
|                                                      |         | Symmetrically     | controll  | ed heating elem    | nents with   | a rated power               | ≥ 200 W.    |
|                                                      |         | Independent di    | immers    | for incandesce     | nt lamps w   | vith rated power            |             |
|                                                      | - I     |                   |           |                    |              |                             |             |
| Classification                                       |         |                   |           |                    |              |                             |             |
| ☐ Class A                                            | All app | aratus not class  | ified as  | Class B, C or E    | )            |                             |             |
| ☐ Class B                                            | Portab  | le tools          |           |                    |              |                             |             |
|                                                      |         | Lighting equipr   | ment wit  | th active input p  | ower > 25    | W                           |             |
| ☐ Class C                                            |         | Lighting equipr   | nent wit  | th active input p  | ower ≤ 25    | W                           |             |
|                                                      |         | (First requirem   | ent, Tal  | ole 3 column 2)    |              |                             |             |
|                                                      |         | Lighting equipr   | ment wit  | th active input p  | ower ≤ 25    | W (Second red               | quirement)  |
| Class D                                              | Persor  | nal computers, te | elevision | n receivers        |              |                             |             |
| Performed measurements                               |         |                   |           |                    |              |                             |             |
| Port under test                                      | AC ma   | nins power input  |           |                    |              |                             |             |
| Voltage – Mains [V]                                  | 220 Va  | ac                |           |                    |              |                             |             |
| Frequency – Mains [Hz]                               | 50 Hz   |                   |           |                    |              |                             |             |
| Observation peroid                                   |         | 6.5 min.          |           | 2.5 min.           |              | Other:                      |             |
| Version of measurement                               |         | EN 61000-4-7:     | 2002 +    | AM1:2009 (IEC      | 61000-4-     | 7:2002+AM1:20               | <br>008)    |
| instrument standard used EN / IEC61000-4-7 (Cl. 7)   |         | EN 61000-4-7:     | 1991      |                    |              |                             |             |
| Control principle used in                            |         | Comply with th    | e requir  | ements of the 0    | Clause 6.1   | (EN / IEC 610               | 00-3-2).    |
| the EUT                                              |         | Not comply wit    | h the re  | quirements of t    | he Clause    | 6.1 (EN / IEC               | 31000-3-2). |
| Operating mode(s) used                               | Mode    | 1                 |           |                    |              |                             |             |
| Remark                                               |         |                   |           |                    |              |                             |             |

**Report no.:** 6185625.50 Page 28 / 52

| eası           | ırem                     | ent data                                                 |                     | Port            | under test       | AC mains po | ower input |               |
|----------------|--------------------------|----------------------------------------------------------|---------------------|-----------------|------------------|-------------|------------|---------------|
| pera           | ting r                   | mode / volt                                              | age / frequenc      | cy used during  | the test         | Mode 1/ 220 | Vac/ 50 Hz |               |
| esult          | s and                    | d limits for                                             | 6185625-2           |                 |                  |             |            |               |
| est R          | Resu                     | t: Pass                                                  | Source qu           | ualification: N | lormal           |             |            |               |
| _              |                          |                                                          |                     | Equipme         | nt Under Test    |             |            |               |
| Brand<br>Mode  |                          |                                                          |                     |                 |                  | GP<br>3530G |            |               |
| Serial         |                          |                                                          |                     | Harmonics F     | Nesults Graph 1/ | I/A<br>'1   |            |               |
|                |                          |                                                          |                     |                 | irrent           |             |            |               |
| Current        | TotalE                   |                                                          | sn.                 |                 |                  |             | 28         | 23            |
| ent            | lapsed                   | 0.00A                                                    | 53.94mA             | 107.87mA        | 161.8ImA         | 215.75mA    | 269.68m4   | 323.62mA      |
|                | Total Elapsed: 3 Minutes | ~                                                        |                     |                 |                  |             |            | >             |
| Peak           | utes                     | ω                                                        | :                   |                 |                  |             |            | >             |
|                |                          | 5 6                                                      |                     |                 |                  |             |            | -             |
|                |                          | 7                                                        |                     |                 |                  |             |            | ) ·           |
| Fall Peak      |                          | ω<br>ω                                                   |                     |                 |                  | I-          |            | ,             |
| 2              |                          | 5 <b>1</b>                                               |                     |                 |                  | l-          | [5         |               |
| _              |                          | 12                                                       |                     |                 | I-               | 5           |            | ~             |
| Fall Avg       |                          | ت<br>4                                                   |                     |                 | _                | I           | no         | 5             |
|                |                          | 15                                                       |                     |                 | I-               | [5          |            | ~             |
| SIL            | _                        | 17                                                       |                     |                 |                  | 5           | -          |               |
| _              | Harmonic                 | 19                                                       |                     |                 | 120              | F-0         | na na      |               |
| _              | ള.                       | 20 21                                                    |                     | -  <br> -       | 5                | ~           |            |               |
| POHC           | .,                       |                                                          |                     | -  s            | ~                | les .       |            |               |
| ñ              |                          | 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | I                   | -  =<br> =      | In               | I~          |            |               |
|                |                          | 25                                                       | I-                  | I- :            | 155<br>No.       | ~           |            |               |
| Not Applicable |                          | 27 2                                                     |                     | -    =          | ~                |             |            |               |
| pplical        |                          | 8 29                                                     |                     | - 5             |                  |             |            |               |
| Эle            |                          | 30 31                                                    | -<br> -             | [G ] N          | n                |             |            |               |
|                |                          | KS E                                                     | 1- [                | s   ~           |                  |             |            |               |
|                |                          | 34                                                       | j- ,'-              | [E ]~           | 100              |             |            |               |
|                |                          | 35                                                       | -<br> -             | 5 N             |                  |             |            | 공             |
|                |                          | 37 3                                                     | -<br> -<br> -<br> - | 55   N          |                  |             |            | ase           |
|                |                          | 38                                                       | . 1                 | [5 ]~           |                  |             |            | Phase 1: PASS |
|                |                          | 8                                                        | - 5                 | No.             |                  |             |            | SS            |
|                |                          |                                                          | :                   | :               | <u> </u>         | :           | :          |               |

| leasure  | ment data                |                   | Port under t    | est A0       | C mains powe | er input  |                      |
|----------|--------------------------|-------------------|-----------------|--------------|--------------|-----------|----------------------|
|          |                          | Ext               | tra Test Inform | ation .      |              |           |                      |
| Current  | THDG                     |                   |                 | 14.53%       |              |           |                      |
|          |                          | Average           | Peak            |              |              | Limit     |                      |
| ГНС      |                          | 323.039mA         |                 | 346.649r     | mΑ           |           | N/A                  |
| POHC     |                          | 31.588mA          |                 | 34.712n      | 1Α           | 251       | .375 mA              |
| Voltage  | Crest Factor             | 1.408             |                 | 1.41         |              |           | N/A                  |
| Current  | Crest Factor             | 1.698             |                 | 1.72         |              |           | N/A                  |
|          | le: .                    |                   | rmonics Result  |              | In 1 (1)     | In 1.74   | In 10/6              |
| Harmon   | ic Status                | Avg (A)           | Avg L(A)        | Avg %ofL     |              | Peak L(A) | Peak %ofL            |
| <u>L</u> | PASS                     | 2.2771            | No Limit        | N/A          | 2.3663       | No Limit  | N/A                  |
| <u> </u> | PASS                     | 0.006501          | +               | 0.601917     |              | 1.62      | 0.519636             |
| 3        | PASS                     | 0.30004           | 2.3             | 13.0452      | 0.32362      | 3.45      | 9.38029              |
| <u>+</u> | PASS                     | 0.007594          | ÷               | 1.76612      | 0.009737     | 0.645     | 1.50955              |
| <u>5</u> | PASS                     | 0.11222           | 1.14            | 9.84386      | 0.11673      | 1.71      | 6.82632              |
| <u></u>  | PASS                     | 0.00732           | 0.3             | 2.43993      | !            | 0.45      | 1.91667              |
| <u></u>  | PASS                     | 0.032954          |                 | 4.27974      |              | 1.155     | 3.06416              |
| 3        | PASS                     | 0.007927          | +               | 3.44657      | 0.011016     | 0.345     | 3.19304              |
| 9        | PASS                     | 0.025368          | <del>-</del>    | 6.342        |              | 0.6       | 4.50233              |
| 10       | PASS                     | 0.007447          | ÷               | 4.04728      | 0.009851     | 0.276     | 3.56917              |
| 11       | PASS                     | 0.020707          | i               | 6.27485      | 0.022559     | 0.495     | 4.55737              |
| L2<br>L3 | PASS                     | 0.006449          | <del>!</del>    | 4.20609      | 0.007599     | 0.229995  | 3.3039               |
|          | PASS                     | 0.015298          |                 | 7.28476      | 0.016401     | 0.315     | 5.20667              |
| L4       | PASS                     | 0.006818          | +               | 5.18778      | 0.007847     | 0.197145  | 3.98027              |
| L5<br>L6 | PASS                     | 0.014737          |                 | 9.82467      | 0.020029     | 0.225     | 8.90178              |
|          | PASS                     | 0.015103          | <del>;</del>    | 13.133       |              | 0.1725    | 11.7194              |
| .7       | PASS                     | 0.014888          | +               | 11.249       | 0.018659     | 0.198525  | 9.39882              |
| L8<br>L9 | PASS                     | 0.015721          |                 | 15.3796      | 0.021961     | 0.15333   | 14.3227              |
|          | PASS                     | 0.012896          | <del>;</del>    | 10.8901      | 0.01456      | 0.17763   | 8.19681              |
| 20<br>21 | PASS                     | 0.007038          | +               | 7.65033      | 0.008551     | 0.138     | 6.19616              |
| T        | PASS                     | 0.011542          |                 | 10.7728      | 0.012825     | 0.16071   | 7.98021              |
| 2        | PASS                     | 0.006121          | ÷               | 7.31874      | 0.007323     | 0.125454  | 5.83696              |
| 23       | PASS                     | 0.01084           | 0.097826        | 11.0809      | 0.012245     | 0.146739  | 8.34475              |
| 24<br>25 | PASS                     | 0.007771          | <del>!</del>    | 10.1357      | 0.012713     | 0.115001  | 11.0547              |
|          | PASS                     | 0.010347          | <del>;</del>    | 11.4967      | 0.011596     | 0.135     | 8.58963              |
| 26<br>27 | PASS                     | 0.007602          | +               | 10.7424      | 0.012004     | 0.106154  | 11.3082              |
|          | PASS                     | 0.009711          | <del>!</del>    | 11.6537      | !            | 0.125     | 8.45283              |
| 28       | PASS                     |                   | 0.065714        |              | 0.006809     |           |                      |
| 29       | PASS                     | 0.009023          |                 |              | 0.009999     | 0.116379  |                      |
| 30       | PASS                     | 0.005501          |                 |              | 0.00705      | 0.092     | 7.6633               |
| 31<br>32 | PASS                     | 0.008719          |                 |              | 0.009785     | 0.108872  | 8.98738              |
|          | PASS                     | 0.008742          | +               | 15.2033      | 0.01954      | 0.08625   | 22.6551              |
| 3        | PASS                     | 0.013552          | <del>!</del>    | - <u>-</u>   | 0.019477     | <u> </u>  |                      |
| 34       | PASS                     | 0.006253          |                 |              |              | 0.081177  |                      |
| 5        | PASS                     | 0.008789          | +               |              | 0.010519     |           |                      |
| 36<br>37 | PASS                     | 0.005223          | <del>!</del>    | - <u>-</u>   | 0.005871     |           |                      |
|          | PASS                     | 0.00771           | 0.060811        |              |              | 0.091217  |                      |
| 38       | PASS                     | 0.005207          |                 |              | 0.005926     | · <b></b> |                      |
| 39       | PASS                     |                   | 0.057692        |              | 0.008388     | ·         | 9.69274              |
|          |                          |                   |                 |              | 0.006255     | 0.069     |                      |
| 22nd Jar | nuary 2024 - 10:         |                   |                 |              |              |           | IECSoft v2_6         |
| 40       | PASS<br>nuary 2024 - 10: | 0.005237<br>51:35 | <del>!</del>    | 11.3837<br>3 | 0.006255     | ·         | 9.06478<br>IECSoft v |

**Report no.:** 6185625.50 Page 30 / 52



| Brand<br>Model<br>Berial<br>Current 1<br>FHC<br>POHC<br>Voltage ( | HDG            | 1         | quipment Under       | r Test<br>AGP          |                     |           |                    |
|-------------------------------------------------------------------|----------------|-----------|----------------------|------------------------|---------------------|-----------|--------------------|
| lodel<br>erial<br>urrent 1<br>HC<br>OHC<br>oltage (               | HDG            | 1         |                      |                        |                     |           |                    |
| Serial Current 1 THC POHC Voltage (                               | HDG            |           |                      |                        |                     |           |                    |
| Serial Current 1 THC POHC Voltage (                               | HDG            | F)        |                      | PMD353                 | 0G                  |           |                    |
| Current 1<br>THC<br>POHC<br>Voltage (                             | HDG            | F)        |                      | N/A                    |                     |           |                    |
| THC<br>POHC<br>Voltage (                                          | HDG            |           | dra Test Inform      |                        |                     |           |                    |
| THC<br>POHC<br>Voltage (                                          |                |           |                      | 16.82%                 | 6                   |           |                    |
| OHC<br>/oltage(                                                   |                | Average   | Peak                 |                        |                     | Limit     |                    |
| OHC<br>/oltage(                                                   |                | 467.444mA |                      | 575.659                | mA                  | 1         | N/A                |
| /oltage (                                                         |                | 40.836mA  |                      | 43.062mA 251.375m      |                     |           |                    |
| Jurrent (                                                         | rest Factor    | 1.41      | 1.412                |                        |                     | 1         | N/A                |
|                                                                   | rest Factor    | 1.695     |                      | 1.412 N/A<br>1.733 N/A |                     |           | V/A                |
|                                                                   |                | Ha        | armonics Result      | ts 1/1                 |                     |           |                    |
| larmoni                                                           | Status         | Avg (A)   | Avg L(A)             | Avg %of                | L Peak (A)          | Peak L(A) | Peak %ofL          |
| l .                                                               | PASS           | 2.7931    | No Limit             | N/A                    | 2.9809              | No Limit  | N/A                |
| 2                                                                 | PASS           | 0.022826  | 5 1.08               | 2.11352                | 0.026041            | 1.62      | 1.60747            |
| 3                                                                 | PASS           | 0.44523   | 2.3                  | 19.3578                | 0.54953             | 3.45      | 15.9284            |
| 1                                                                 | PASS           | 0.025537  |                      | 5.93884                |                     | 0.645     | 4.40574            |
| 5                                                                 | PASS           | 0.1118    | 1.14                 | 9.80702                | 4                   | 1.71      | 7.79591            |
| 5                                                                 | PASS           | 0.025216  |                      | 8.40533                |                     | 0.45      | 5.94933            |
| 7                                                                 | PASS           | 0.05045   | 3 0.77               | 6.55234                | 0.061715            | 1.155     | 5.34329<br>7.57015 |
| 3                                                                 | PASS           | 0.024449  | 0.23                 | 10.63                  |                     | 0.345     |                    |
| 9                                                                 | PASS           | 0.04221   | 0.4                  | 10.5525                |                     | 0.6       | 7.79917            |
| 10                                                                | PASS           | 0.023544  |                      | 12.7957                | 0.025074            | 0.276     | 9.08478            |
| 11                                                                | PASS           | 0.037184  |                      | 11.2679                | 0.040107            |           | 8.10242            |
| 12                                                                | PASS           | 0.022485  | 0.15333              | 14.6644                | 0.023558            | 0.229995  |                    |
| 11<br>12<br>13<br>14                                              | PASS           | 0.031739  |                      | 15.1138                | 0.034416            |           | 10.9257            |
| 14                                                                | PASS           |           | 7 0.13143            | 16.7443                |                     | 0.197145  |                    |
| 15<br>16<br>17                                                    | PASS           | 0.029419  | 0.15                 | 19.6127                |                     |           | 15.9991            |
| 16                                                                | PASS           | 0.023696  |                      | 20.6052                | 0.033901            | 0.1725    | 19.6528            |
| 17                                                                | PASS           | 0.026897  | 7 0.13235            | 20.3226                | 0.032539            | 0.198525  | 16.3904            |
| 18<br>19                                                          | PASS           |           | 1 0.10222            | 21.1221                | 0.027852            |           | 18.1647            |
| 19                                                                | PASS           | 0.023286  |                      | 19.6639                |                     | 0.17763   | 14.1434            |
| 20<br>21<br>22<br>23<br>24                                        | PASS           |           | 1 0.092              | 19.5772                |                     | 0.138     | 14.413             |
| <u>/1</u>                                                         | PASS           | 0.019784  |                      | 18.4656                | 0.021024            | 0.160/1   | 13.082             |
| 22                                                                | PASS<br>PASS   | 0.016291  | 0.083636             | 19.4785                | 0.017297            | 0.125454  | 13.7875            |
| 23                                                                |                | 0.016828  | 0.097826             | 17.202                 |                     | 0.146739  |                    |
|                                                                   | PASS           |           | 0.076667             |                        |                     |           |                    |
|                                                                   | PASS           | 0.014221  |                      | 15.8011                |                     |           | 11.6578            |
| 17                                                                | PASS           | i0.013829 | 0.070769             | 114.2502               | 0.013239            | 0.106154  | 110 2456           |
| 10                                                                | PASS<br>PASS   | jU.U119bt | 0.083333<br>0.065714 | 14.5595                | 0.012932            | 0.125     | 10.3456            |
| 25<br>26<br>27<br>28<br>29                                        | PASS           |           | 0.065/14             |                        |                     | 0.098571  |                    |
| 50                                                                | PASS           |           | 5 0.061333           |                        |                     |           | 14.8642            |
| 30<br>21                                                          | PASS           | 0.00922   |                      |                        |                     |           |                    |
| 31<br>32<br>33<br>34<br>35                                        |                | 0.00322   | 0.072581             | 24 5002                | 0.010765<br>0.02692 | 0.08625   | 31.2116            |
| 7 <u>4</u>                                                        | PASS<br>PASS   | 0.01414   | 4 0.0575<br>0.068182 | 10 /772                | 0.02032             | 0.102273  | 17 01/10           |
| 34                                                                | PASS           | 0.01326   | 7 0.054118           | 22.4773                | 0.010322            | 0.081177  |                    |
| 35                                                                | PASS           | 0.01223   | 0.064286             | 16 8466                | 0.024337            | 0.096429  |                    |
| :<br>36                                                           | PASS           |           | 1 0.051111           |                        |                     | 0.036423  | <del>+</del>       |
| 36<br>37<br>38<br>39                                              |                |           | 0.060811             |                        |                     | 0.091217  |                    |
| :/<br>RR                                                          | PASS<br>PASS   | 0.00800   | 0.048421             | 14 6300                | 0.003478            | 0.072632  | 10.0311            |
| 39                                                                | PASS           |           | 4 0.057692           |                        |                     | 0.086538  |                    |
| 10                                                                | PASS           |           | 7 0.046              | 14.4074                |                     |           | 12.6581            |
|                                                                   | uary 2024 - 15 |           | Ph:1 Page 3/         |                        | 10.000704           | ,5.005    | ECSoft v2 6        |
| 2.70.7011                                                         | 3317 2027 1.   |           | -2:2018 Fluctua      |                        | nics                |           | 200011 V2_0        |

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

| 4.4 Voltage changes                                                  | s, volta                                                                                 | age fluctuations and f          | licker      |            | VERDICT      | Γ: | PASS |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------|-------------|------------|--------------|----|------|
|                                                                      |                                                                                          |                                 |             |            |              |    |      |
| Standard                                                             | EN 61                                                                                    | 000-3-3                         |             |            |              |    |      |
| Limits                                                               |                                                                                          |                                 |             |            |              |    |      |
| P <sub>ST</sub> (Short term flicker)                                 |                                                                                          | ≤1                              | $\boxtimes$ | Not Appli  | cable        |    |      |
| P <sub>LT</sub> (Long term flicker)                                  |                                                                                          | ≤ 0,65                          | $\boxtimes$ | Not Appli  | cable        |    |      |
| dc (Relative Voltage change)                                         |                                                                                          | ≤ 3,3%                          |             | Not Appli  | cable        |    |      |
| d <sub>MAX</sub> (Max. voltage change)                               |                                                                                          | ≤ 4%                            |             | 6%         |              |    |      |
|                                                                      |                                                                                          | 7%                              |             | Not Appli  | cable        |    |      |
| Supplemental information:                                            |                                                                                          |                                 |             |            |              |    |      |
| Performed measurements  Reason for not performing the measurement(s) | Reason for not performing Tests are not necessary because the EUT is unlikely to produce |                                 |             |            |              |    | ce   |
| Port under test                                                      | AC Ma                                                                                    | ins power input                 |             |            |              |    |      |
| Voltage – Mains [V]                                                  | 220 Va                                                                                   | ac .                            |             |            |              |    |      |
| Frequency – Mains [Hz]                                               | 50 Hz                                                                                    |                                 |             |            |              |    |      |
| Test method                                                          |                                                                                          | Flickermeter according EN       | N/IEC 6     | 31000-4-15 | :2011        |    |      |
|                                                                      |                                                                                          | Simulation (Clause 4.2.3 of     | of EN / II  | EC 61000-  | 3-3)         |    |      |
|                                                                      |                                                                                          | Analytical method (Clause       | 4.2.4 o     | f EN / IEC | 61000-3-3)   |    |      |
|                                                                      |                                                                                          | Use of $P_{st} = 1$ curve (Clau | se 4.2.5    | of EN / IE | C 61000-3-3) |    |      |
| Observation peroid                                                   |                                                                                          | 10 min.                         | min.        |            | Other:       |    |      |
|                                                                      | $\boxtimes$                                                                              | 24 times switching accord       | ing to A    | nnex B     |              |    |      |
|                                                                      |                                                                                          |                                 |             |            |              |    |      |
| Operating mode(s) used                                               | Mode                                                                                     | 1                               |             |            |              |    |      |

See next page.

**Report no.:** 6185625.50 Page 33 / 52

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

| Measurement data                    | Port under test       | AC mains power input |
|-------------------------------------|-----------------------|----------------------|
| Operating mode used during the test | Mode1/ 220 Vac/ 50 Hz |                      |

# Results and limits for 6185625-2

| T-max (dt > 3.3%)                       | 0 ms           |
|-----------------------------------------|----------------|
| Maximum voltage change d <sub>MAX</sub> | 0.0456 %       |
| Relative Voltage change dc              | 0.0028 %       |
| Short term flicker P <sub>ST</sub>      | Not applicable |
| Long term flicker P <sub>LT</sub>       | Not applicable |

# Results and limits for 6185625-4

| T-max (dt > 3.3%)                       | 0 ms           |
|-----------------------------------------|----------------|
| Maximum voltage change d <sub>MAX</sub> | 0.0728 %       |
| Relative Voltage change d <sub>C</sub>  | 0.0010 %       |
| Short term flicker P <sub>ST</sub>      | Not applicable |

Remark

**Report no.:** 6185625.50 Page 34 / 52

# 5 **IMMUNITY TEST RESULTS**

# 5.1 Performance (Compliance) criteria

[According to EN IEC 55014-2 (CISPR 14-2)]

<u>Performance criteria A:</u> The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer when the apparatus is used as intended. If the minimum performance level or the permissible performance loss is not specified by the manufacturer then either of these may be derived from the product description and documentation and from what the user may reasonably expect from the apparatus if used as intended.

<u>Performance criteria B</u>: The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer when the apparatus is used as intended. During the test, degradation of performance is allowed however no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer then either of these may be derived from the product description and documentation and from what the user may reasonable expect from the apparatus if used as intended.

<u>Performance criteria C:</u> Temporary loss of function is allowed provided the function is self- recoverable or can be restored by the operation of the controls or by any operation specified in the instruction for use.

#### 5.1.1 Performance criteria related to immunity tests

| Immunity test                                   | Performance criteria |  |  |
|-------------------------------------------------|----------------------|--|--|
| Electrostatic discharge                         | В                    |  |  |
| Radio-frequency electromagnetic fields          | A                    |  |  |
| Fast transients                                 | В                    |  |  |
| Surge transient                                 | В                    |  |  |
| Injected currents (radio-frequency common mode) | A                    |  |  |
| Voltage dips and short interruptions            | С                    |  |  |

#### 5.1.2 Manufacturer defined performance criteria

Not provided.

**Report no.:** 6185625.50 Page 35 / 52

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

# 5.2 Monitored - Checked Functions / Parameters

During the immunity tests the following functions of the EUT has/have been monitored/checked.

| $\boxtimes$ | Motor speed                |             | Display data             |  |  |
|-------------|----------------------------|-------------|--------------------------|--|--|
|             | Switching                  |             | Data storage             |  |  |
|             | Standby mode               |             | Sensor functions         |  |  |
|             | Temperature                |             | Audible signals          |  |  |
|             | Power consumption          |             | Others : LED's           |  |  |
|             | AC mains input current     | $\boxtimes$ | Others : function status |  |  |
|             | Timing                     |             | Others:                  |  |  |
|             | Illumination               |             | Others:                  |  |  |
| Supp        | Supplementary information: |             |                          |  |  |
|             |                            |             |                          |  |  |

| Immunity test                                   | Monitored - Checked function(s)/parameter(s) during / after the test | Method           |
|-------------------------------------------------|----------------------------------------------------------------------|------------------|
| Electrostatic discharge                         | Tool speed / function status                                         | Visual           |
| Dadie for word or all attracts and the fields   |                                                                      | Visual / Camera/ |
| Radio-frequency electromagnetic fields          |                                                                      | tachometer       |
| Fast transients                                 | Tool speed / function status                                         | Visual           |
| Surge transient                                 | Tool speed / function status                                         | Visual           |
| Injected currents (radio-frequency common mode) | Tool speed / function status                                         | Visual           |
| Voltage dips and short interruptions            | Tool speed / function status                                         | Visual           |
| Supplementary information :                     |                                                                      |                  |

**Report no.:** 6185625.50 Page 36 / 52

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

| 5.3 | Electrostatic discharge immunity | VERDICT: | PASS |
|-----|----------------------------------|----------|------|
|-----|----------------------------------|----------|------|

Electrostatic discharges (ESD) are the result of persons or objects that accumulate static electricity due to for instance walking on synthetic carpets. The ESD can influence the operation of equipment or damage its electronics, either by a direct discharge or indirectly by coupling or radiation. Both effects are simulated during the tests.

### Requirements

| Standard                                       | EN IEC 55014-2                           |              |             |       |             |       |  |    |
|------------------------------------------------|------------------------------------------|--------------|-------------|-------|-------------|-------|--|----|
| Basic standard                                 | EN 6                                     | EN 61000-4-2 |             |       |             |       |  |    |
| Port under test                                | Enclosure                                |              |             |       |             |       |  |    |
| Air discharges 1)                              |                                          | ±2 kV        |             | ±4 kV | $\boxtimes$ | ±8 kV |  | kV |
| Contact discharges 1)                          |                                          | ±2 kV        | $\boxtimes$ | ±4 kV |             | ±8 kV |  | kV |
| Number of discharges                           | ≥ 10 per polarity with ≥ 1 sec interval. |              |             |       |             |       |  |    |
| 1) Tests with lower voltages are not required. |                                          |              |             |       |             |       |  |    |

#### Performed tests for sample 6185625-1, 6185625-2, 6185625-3 and 6185625-4

| Set-up                               |                   | ☐ Floor standing               |  |  |  |
|--------------------------------------|-------------------|--------------------------------|--|--|--|
| Ambient temperature [°C]             | 18 °C             | Relative Humidity air [%] 55 % |  |  |  |
|                                      |                   |                                |  |  |  |
| Voltage – Mains [V]                  | 110 Vac / 220 Vac |                                |  |  |  |
| Frequency – Mains [Hz] 60 Hz / 50 Hz |                   |                                |  |  |  |
|                                      |                   |                                |  |  |  |
| Operating mode(s) used               | Mode 1            |                                |  |  |  |

| Test Point                                                                                                                                                                                                    |                  | Test Voltage [kV]<br>& Polarity | Coupling type | # of applied discharges / polarity | Discharge interval [s] |   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------|---------------|------------------------------------|------------------------|---|--|
| $\boxtimes$                                                                                                                                                                                                   | Points on cond   | uctive surface.                 | ±4            | Contact                            | 10                     | 1 |  |
| $\boxtimes$                                                                                                                                                                                                   | Points on non-   | conductive surface.             | ±8            | Air                                | 10                     | 1 |  |
| $\boxtimes$                                                                                                                                                                                                   | HCP top side.    |                                 | ±4            | Contact                            | 10                     | 1 |  |
| $\boxtimes$                                                                                                                                                                                                   | HCP bottom side. |                                 | ±4            | Contact                            | 10                     | 1 |  |
| $\boxtimes$                                                                                                                                                                                                   | VCP right side.  |                                 | ±4            | Contact                            | 10                     | 1 |  |
| $\boxtimes$                                                                                                                                                                                                   | VCP left side.   |                                 | ±4            | Contact                            | 10                     | 1 |  |
| $\boxtimes$                                                                                                                                                                                                   | VCP front side.  |                                 | ±4            | Contact                            | 10                     | 1 |  |
| $\boxtimes$                                                                                                                                                                                                   | VCP rear side.   |                                 | ±4            | Contact                            | 10                     | 1 |  |
|                                                                                                                                                                                                               |                  |                                 |               |                                    |                        |   |  |
| Observation(s)  During the test no loss of performance was observed. After the intended No unacceptable loss of performance or data was of performance or data was of performance or data was of performance. |                  |                                 |               |                                    | unctioned as           |   |  |

Observation(s)

During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance or data was observed.

Supplementary information:

**Report no.:** 6185625.50 Page 37 / 52

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

| 5.4 | Electrical Fast Transients immunity | VERDICT: | PASS |
|-----|-------------------------------------|----------|------|
|     | •                                   |          |      |

The EFT immunity test simulates disturbances by bursts of very short transients caused for example by switching off loads such as an AC motor or bouncing relay contacts. The transients are likely to disturb electronics but less likely to cause damage.

### Requirements

| Standa                                                                                                                                                                                           | ard                                                                                                             | EN IEC 55014-2 |            |                      |                   |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------|------------|----------------------|-------------------|--|--|
| Basic                                                                                                                                                                                            | standard                                                                                                        | EN 61000-4-4   |            |                      |                   |  |  |
| Pulse                                                                                                                                                                                            | characteristics                                                                                                 | 5/50 ns        |            |                      |                   |  |  |
| Port                                                                                                                                                                                             |                                                                                                                 |                | Test level | Repetition frequency | Duration          |  |  |
|                                                                                                                                                                                                  | AC input-output power 1)                                                                                        |                | ± 1000 V   | 5 KHz                | 2 min. / polarity |  |  |
|                                                                                                                                                                                                  | DC input-output power 2)                                                                                        | ± 500 V        | 5 KHz      | 2 min. / polarity    |                   |  |  |
|                                                                                                                                                                                                  | Signal and Control lines                                                                                        | ± 500 V        | 5 KHz      | 2 min. / polarity    |                   |  |  |
| 1) For extra low voltage a.c ports, this testing is only applicable to ports interfacing with cables whose total length may exceed 3 m according to the manufacturer's functional specification. |                                                                                                                 |                |            |                      |                   |  |  |
| <sup>2)</sup> Not a                                                                                                                                                                              | <sup>2)</sup> Not applicable to battery operated appliances that cannot be connected to the mains while in use. |                |            |                      |                   |  |  |

<sup>&</sup>lt;sup>3)</sup> Applicable only to ports interfacing with cables whose total length may exceed 3 m according to the manufacturer's functional specification.

### Performed tests for sample 6185625-1, 6185625-2, 6185625-3 and 6185625-4

| Voltage – Mains [V]    | 110 \       | 110 Vac / 220 Vac                                        |             |                           |  |
|------------------------|-------------|----------------------------------------------------------|-------------|---------------------------|--|
| Frequency – Mains [Hz] | 60 Hz       | 60 Hz / 50 Hz                                            |             |                           |  |
| Operating mode(s) used | Mode 1      |                                                          |             |                           |  |
|                        |             |                                                          |             |                           |  |
| Test Set-up            |             | Equipment standing on floor at (0                        | $0.1 \pm 0$ | .01) m above ground plane |  |
|                        | $\boxtimes$ | Equipment on the table (0.1 ± 0.01) m above ground plane |             |                           |  |
|                        |             | Artificial hand applied. Location refer to annex 3.      |             |                           |  |
| Coupling               | $\boxtimes$ | Common mode                                              |             | Other: unsymmetric mode   |  |

| Port(s) under test                                                                                                                                                    |         | Test Voltage<br>&Polarity | Repetition<br>Frequency | Test duration / polarity | Injection method |     |  |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------|-------------------------|--------------------------|------------------|-----|--|-------|
| AC / DC mains powe                                                                                                                                                    | r input | 1 kV                      | 5 KHz                   | 2 min                    | $\boxtimes$      | CDN |  | Clamp |
| AC / DC power output                                                                                                                                                  |         |                           | 5 KHz                   |                          |                  | CDN |  | Clamp |
| Ethernet / LAN                                                                                                                                                        |         |                           | 5 KHz                   |                          |                  | CDN |  | Clamp |
| Observation(s)  During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance was observed. |         |                           |                         |                          |                  |     |  |       |

**Report no.:** 6185625.50 Page 38 / 52

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

# 5.5 Surge transient immunity VERDICT: PASS

The surge transient immunity test simulates the surges that are caused by over-voltages due to indirect (induced) lightning transients. The pulse is a slow transient with high-energy contents and due to its long duration may cause damage to an unprotected EUT.

#### Requirements

|                                                | ı                                                |                                            |               |     |  |  |
|------------------------------------------------|--------------------------------------------------|--------------------------------------------|---------------|-----|--|--|
| Standard                                       | EN IEC 55014-2                                   | EN IEC 55014-2                             |               |     |  |  |
| Basic standard                                 | EN 61000-4-5                                     |                                            |               |     |  |  |
| Pulse characteristics                          |                                                  |                                            |               |     |  |  |
| Repetition rate                                | ≥ 60 secs. (for each test level and phase angle) |                                            |               |     |  |  |
| Number of pulses                               | 5 pulses (at each p                              | polarity and phase a                       | angle)        |     |  |  |
| Port                                           |                                                  | Test level & Polarity & Coupling Phase and |               |     |  |  |
| Port                                           |                                                  | Line to Line                               | Line to Earth | [°] |  |  |
| AC input power 1)                              | + 1 kV                                           | + 2 kV                                     | 90            |     |  |  |
| AC input power 1)                              | - 1 kV                                           | - 2 kV                                     | 270           |     |  |  |
| 1) Tests with lower voltages are not required. |                                                  |                                            |               |     |  |  |

#### Performed tests for sample 6185625-1, 6185625-2, 6185625-3 and 6185625-4

| The state of the s |                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Voltage – Mains [V]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110 Vac / 220 Vac                              |
| Frequency – Mains [Hz]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60 Hz / 50 Hz                                  |
| Operating mode(s) used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mode 1                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| Repetition rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60 secs. (for each test level and phase angle) |
| Number of pulses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 pulses (at each polarity and phase angle)    |

|             | Port(s) under test                                                                                                                                                           | Coupling         | Test level<br>& Polarity | Phase angle<br>[°] | Remark |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|--------------------|--------|--|
| $\boxtimes$ | AC mains input power                                                                                                                                                         | Line to Neutral  | +1 kV                    | 90                 |        |  |
| $\boxtimes$ | AC mains input power                                                                                                                                                         | Line to Neutral  | -1 kV                    | 270                |        |  |
| $\boxtimes$ | AC mains input power                                                                                                                                                         | Line to Earth    | + 2 kV                   | 90                 |        |  |
| $\boxtimes$ | AC mains input power                                                                                                                                                         | Line to Earth    | - 2 kV                   | 270                |        |  |
| $\boxtimes$ | AC mains input power                                                                                                                                                         | Neutral to Earth | + 2 kV                   | 90                 |        |  |
| $\boxtimes$ | AC mains input power                                                                                                                                                         | Neutral to Earth | - 2 kV                   | 270                |        |  |
| Obse        | During the test no loss of performance was observed. After the test the EUT Observation(s) functioned as intended. No unacceptable loss of performance or data was observed. |                  |                          |                    |        |  |
| Supp        | Supplementary information:                                                                                                                                                   |                  |                          |                    |        |  |

**Report no.:** 6185625.50 Page 39 / 52

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

| 5.6 | Injected currents (RF common mode) immunity | VERDICT: | PASS |
|-----|---------------------------------------------|----------|------|
|-----|---------------------------------------------|----------|------|

During this test the immunity of the equipment for induced or conducted electromagnetic fields is checked. Fields generated by radio and other transmitters cause RF voltages in long cables like the mains network. This test reproduces these induced disturbing voltages by injecting them to the EUT via the cabling.

#### Requirements

| Standard EN IEC 55014-2 |                                        |                 |           |                  |  |
|-------------------------|----------------------------------------|-----------------|-----------|------------------|--|
| Basic                   | standard                               | EN 61000-4-6    |           |                  |  |
|                         | Frequency range                        | Modulation      | Step size | Dwell time       |  |
|                         | 0.15 – 80 MHz                          | 80 % AM (1 kHz) | ≤ 1%      | ≥ 0,5 s          |  |
| $\boxtimes$             | 0.15 – 230 MHz                         | 80 % AM (1 kHz) | ≤ 1%      | ≥ 0,5 s          |  |
|                         | Port                                   |                 | Test I    | evel, <i>U</i> o |  |
|                         | AC input-output power 1)               |                 | 3 V       |                  |  |
|                         | DC input-output power <sup>2) 3)</sup> |                 | 1 V       |                  |  |
|                         | Signal and Control lines               | 4)              | 1 V       |                  |  |

<sup>1)</sup> For extra low voltage a.c ports, this testing is only applicable to ports interfacing with cables whose total length may exceed 3 m according to the manufacturer's functional specification.

#### Performed tests for sample 6185625-1, 6185625-2, 6185625-3 and 6185625-4

| Frequency rai          | nge (a <sub>l</sub>           | Modulation (applied)                                          | Step size (applied)             |               |  |  |
|------------------------|-------------------------------|---------------------------------------------------------------|---------------------------------|---------------|--|--|
| ☐ 0.15 – 80 MHz        | $\boxtimes$                   | 0.15 – 230 MHz                                                | 80 % AM (1 kHz)                 | 1 %           |  |  |
|                        |                               |                                                               |                                 |               |  |  |
| Voltage – Mains [V]    | 110 \                         | Frequency – Mains [Hz]                                        | 60Hz / 50 Hz                    |               |  |  |
| Operating mode(s) used | Operating mode(s) used Mode 1 |                                                               |                                 |               |  |  |
|                        | 1                             |                                                               |                                 |               |  |  |
| Test set-up            |                               | Equipment standing on fl                                      | oor at $(0.1 \pm 0.01)$ m above | ground plane. |  |  |
|                        | $\boxtimes$                   | Equipment on the table $(0.1 \pm 0.01)$ m above ground plane. |                                 |               |  |  |
|                        |                               | Artificial hand applied.                                      |                                 |               |  |  |

| Port(s) under test         |                 | Test Level (applied) | Injection method         | Dwell time (applied) | Remark            |  |  |
|----------------------------|-----------------|----------------------|--------------------------|----------------------|-------------------|--|--|
| AC mains power input       |                 | 3 V                  | CDN-M3                   | 3 s                  |                   |  |  |
|                            |                 |                      |                          |                      |                   |  |  |
|                            | During the test | no loss of per       | formance was observed    | After the test the   | e FLIT functioned |  |  |
| Observation(s)             | _               |                      | e loss of performance or |                      |                   |  |  |
| Supplementary information: |                 |                      |                          |                      |                   |  |  |
|                            |                 |                      |                          |                      |                   |  |  |

**Report no.:** 6185625.50 Page 40 / 52

<sup>&</sup>lt;sup>2)</sup> Not applicable to battery operated appliances that cannot be connected to the mains while in use.

<sup>&</sup>lt;sup>3)</sup> Applicable to battery operated appliances that can be connected to the mains while in use, or to appliances for which the length of d.c. cables may exceed 3 m according to the manufacturer's functional specification.

<sup>&</sup>lt;sup>4)</sup> Applicable only to ports interfacing with cables whose total length may exceed 3 m according to the manufacturer's functional specification.

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

# 5.7 Power supply interruptions and dips immunity VERDICT: PASS

The purpose of the test is to verify the immunity of the equipment against voltage dips and voltage interruptions. It helps to ensure that the equipment functions properly (as expected and safely) with power supply fluctuations. Voltage dips and interruptions are caused by faults in the LV, MV, HV networks (short-circuit or ground faults).

#### Requirements

| Standard                  | EN IEC 55014-2           | EN IEC 55014-2                                             |       |                                          |  |  |  |  |
|---------------------------|--------------------------|------------------------------------------------------------|-------|------------------------------------------|--|--|--|--|
| Basic standard            | EN 61000-4-11            |                                                            |       |                                          |  |  |  |  |
| # of dips & interruptions | 3 dips / interrupti      | 3 dips / interruptions for each test level and phase angle |       |                                          |  |  |  |  |
| Interval between events   | ≥ 10 seconds             | ≥ 10 seconds                                               |       |                                          |  |  |  |  |
| Port                      | Test level 1)            | Period (Cycles)                                            |       | Performance Criteria                     |  |  |  |  |
| Poit                      | Test level "             | 50 Hz                                                      | 60 Hz | Performance Criteria                     |  |  |  |  |
| AC input power port       | U <sub>NOM</sub> – 100 % | 0.5                                                        | 0.5   | C; Refer to the chapter 5.1 for details. |  |  |  |  |
| AC input power port       | U <sub>NOM</sub> – 60 %  | 10 12                                                      |       | C; Refer to the chapter 5.1 for details. |  |  |  |  |
| AC input power port       | U <sub>NOM</sub> – 30 %  | 25                                                         | 30    | C; Refer to the chapter 5.1 for details. |  |  |  |  |

<sup>&</sup>lt;sup>1)</sup> Changes to the voltage level shall occur at a zero crossing point in the a.c. voltage waveform.

NOTE: Where the equipment has a rated voltage range the following shall apply:

- If the voltage range does not exceed 20% of the lower voltage specified for the rated voltage range. A single voltage within that range may be selected for testing.
- In all other cases, the test procedure shall be applied for both the lowest and highest voltages declared in the voltage range.

#### Performed tests for sample 6185625-1, 6185625-2, 6185625-3 and 6185625-4

| UNOM [VAC]                                                                                                                                                            | Terminal    | Voltage dip<br>[% U <sub>NOM</sub> ] | Duration | - <i>-</i> - | Repetion rate | Number of dips per test | Phase angle |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------|----------|--------------|---------------|-------------------------|-------------|--|
|                                                                                                                                                                       |             | [ /o UNOM]                           | 50 Hz    | 60 Hz        | [s]           | aipo poi toot           | [°]         |  |
| 220                                                                                                                                                                   | L-N         | 0                                    | 0,5      | /            | 10            | 3                       | 0, 180      |  |
| 220                                                                                                                                                                   | L-N         | 40                                   | 10       | /            | 10            | 3                       | 0, 180      |  |
| 220                                                                                                                                                                   | L-N         | 70                                   | 25       | /            | 10            | 3                       | 0, 180      |  |
| 110                                                                                                                                                                   | L-N         | 0                                    | /        | 0.5          | 10            | 3                       | 0, 180      |  |
| 110                                                                                                                                                                   | L-N         | 40                                   | /        | 12           | 10            | 3                       | 0, 180      |  |
| 110                                                                                                                                                                   | L-N         | 70                                   | /        | 30           | 10            | 3                       | 0, 180      |  |
| Operating mo                                                                                                                                                          | ode(s) used | Mode 1                               |          |              |               |                         |             |  |
| Observation(s)  During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance was observed. |             |                                      |          |              |               |                         |             |  |
| Supplementary information:                                                                                                                                            |             |                                      |          |              |               |                         |             |  |
|                                                                                                                                                                       |             |                                      |          |              |               |                         |             |  |

**Report no.:** 6185625.50 Page 41 / 52

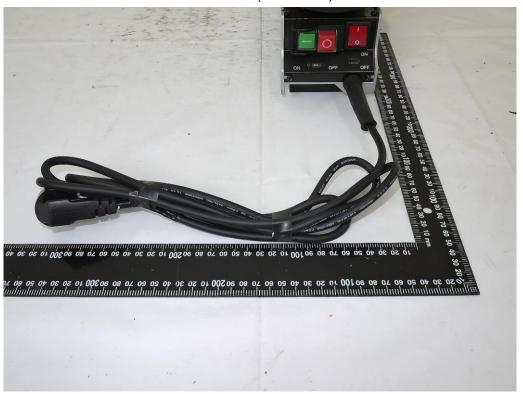

# **IDENTIFICATION OF THE EQUIPMENT UNDER TEST**

### **EUT PHOTOS**

6



PMD3530 (110-120 V)




PMD3530 (110-120 V)

**Report no.:** 6185625.50 Page 42 / 52



PMD3530 (220-240 V)



PMD3530 (220-240 V)

# **EUT PHOTOS**



PMD3530G (110-120 V)



PMD3530G (110-120 V)



PMD3530G (220-240 V)



PMD3530G (220-240 V)

### 7 ANNEX 1- MEASUREMENT UNCERTAINTIES

The table(s) below show(s) measurment uncertainties of the EMC test set-ups. The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k= 2, providing a level of confidence of approximately 95 %.

| Electromagnetic Interferen                   | Electromagnetic Interference |                |                                                                                                                                              |  |  |  |  |  |
|----------------------------------------------|------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Measurement Item                             | Measurement Frequency        | Polarization   | Uncertainty                                                                                                                                  |  |  |  |  |  |
| Conducted Emission                           | 150 kHz ~ 30 MHz             | LINE / NEUTRAL | ± 3.44dB                                                                                                                                     |  |  |  |  |  |
| Absorbing clamp test                         | 30MHz ~ 300MHz               | Voltage        | ± 4.37dB                                                                                                                                     |  |  |  |  |  |
| Harmonic current emission                    | -                            | -              | ± 0.53%                                                                                                                                      |  |  |  |  |  |
| voltage fluctuations and flicker             | -                            | -              | ± 0.44%                                                                                                                                      |  |  |  |  |  |
| Electromagnetic Susceptil                    | oility                       |                |                                                                                                                                              |  |  |  |  |  |
| Measurement                                  |                              | Item           | Uncertainty                                                                                                                                  |  |  |  |  |  |
| Electrostatic Discharges (ESD)               |                              |                | Rise time Tr ± 12.71% ns<br>Voltage peak ± 1.74%V<br>Peak current lp ± 3.35% A<br>Current at 30 ns ± 3.47% ns<br>Current at 60 ns ± 3.47% ns |  |  |  |  |  |
| Electrical Fast Transients and bursts        |                              |                | CDN & Clamp<br>V peak ± 12.82% V<br>Rise time ± 9.25% ns<br>Pulse width ±6.25% ns                                                            |  |  |  |  |  |
| Surges                                       |                              |                | V peak = $\pm$ 9.75% V<br>Rise time = $\pm$ 14.54% us<br>Duration = $\pm$ 2.04% us                                                           |  |  |  |  |  |
| Conducted Disturbances, induced by RF fields |                              |                | M2/M3/M5 ± 1.40 dB<br>Clamp ± 3.21 dB                                                                                                        |  |  |  |  |  |
| Voltage Dips, Interruptions,                 | and variations               |                | ± 1.61% V                                                                                                                                    |  |  |  |  |  |

**Report no.:** 6185625.50 Page 46 / 52

# 8 ANNEX 2 - USED EQUIPMENT

| Conducted disturbance |              |                       |              |                  |            |  |  |  |
|-----------------------|--------------|-----------------------|--------------|------------------|------------|--|--|--|
| Instrument            | Manufacturer | Model No.             | Serial No.   | Calibration Date | Valid Date |  |  |  |
| Receiver              | R&S          | ESHS10                | 835499/012   | 10/30/2023       | 10/29/2024 |  |  |  |
| LISN                  | INTRX        | LIN63-4               | 1803001      | 03/12/2024       | 03/12/2025 |  |  |  |
| LISN                  | Schwarzbeck  | NSLK-8127             | 01071        | 7/6/2023         | 7/5/2024   |  |  |  |
| Coaxial Cable         | SUHNER       | RG214                 | C001-1358175 | 6/21/2023        | 6/20/2024  |  |  |  |
| Attenuator            | JYEBAO       | FAT-<br>NM5NF5T6G2W10 | ATT002       | 10/24/2023       | 10/23/2024 |  |  |  |
| test software         | Audix        | E3                    | 20180316b    | NA               | NA         |  |  |  |

| Disturbance power |                           |           |            |                  |            |  |  |  |
|-------------------|---------------------------|-----------|------------|------------------|------------|--|--|--|
| Instrument        | Manufacturer              | Model No. | Serial No. | Calibration Date | Valid Date |  |  |  |
| EMI test receiver | R&S                       | ESR7      | 102004     | 4/28/2023        | 4/27/2024  |  |  |  |
| Absorbing clamp   | AMETEK CTS<br>Europe GmbH | MDS21     | 60696      | 6/14/2023        | 6/13/2024  |  |  |  |
| Coaxial cable     | HUBER+SHUN<br>ER          | RG223     | C002       | 6/13/2023        | 6/12/2024  |  |  |  |
| Attenuator        | AMETEK CTS<br>Europe GmbH | ATT6dB    | LE263      | 6/13/2023        | 6/12/2024  |  |  |  |
| test software     | Audix                     | E3        | 20180316b  | NA               | NA         |  |  |  |

| Harmoni                         | Harmonic current emissions & Voltage changes, voltage fluctuations and flicker |           |            |                  |            |  |  |  |  |
|---------------------------------|--------------------------------------------------------------------------------|-----------|------------|------------------|------------|--|--|--|--|
| Instrument                      | Manufacturer                                                                   | Model No. | Serial No. | Calibration Date | Valid Date |  |  |  |  |
| Power source                    | N4L                                                                            | N4A30     | 91J-12901  | 4/14/2023        | 4/13/2024  |  |  |  |  |
| Flicker<br>Impedance<br>Network | N4L                                                                            | IMP323    | 91G-12804  | 4/14/2023        | 4/13/2024  |  |  |  |  |
| power Analyzer                  | N4L                                                                            | PPA5531   | 166-05417  | 4/14/2023        | 4/13/2024  |  |  |  |  |
| Test software                   | N4L                                                                            | IEC_Soft  | 2.6        | NA               | NA         |  |  |  |  |

| Electrostatic discharge immunity |              |            |              |                  |            |  |  |  |
|----------------------------------|--------------|------------|--------------|------------------|------------|--|--|--|
| Instrument                       | Manufacturer | Model No.  | Serial No.   | Calibration Date | Valid Date |  |  |  |
| ESD Simulator                    | NoiseKen     | ESS-S3011A | ESS1848144   | 02/03/2024       | 02/02/2025 |  |  |  |
| ESD Gun                          | NoiseKen     | GT-30RA    | ESS1848164   | 02/03/2024       | 02/02/2025 |  |  |  |
| Thermometer                      | Elitech      | GSP-6      | EFG22A102880 | 3/12/2024        | 3/11/2025  |  |  |  |

| Fast transient immunity |              |           |            |                  |            |  |  |  |
|-------------------------|--------------|-----------|------------|------------------|------------|--|--|--|
| Instrument              | Manufacturer | Model No. | Serial No. | Calibration Date | Valid Date |  |  |  |
| EFT Burst<br>Generator  | EMCLioncel   | EFT-406CB | 180803     | 02/16/2024       | 02/15/2025 |  |  |  |
| Coupling Decoupling     | EMCLioncel   | CDN-433CB | 180801     | 02/16/2024       | 02/15/2025 |  |  |  |

**Report no.:** 6185625.50 Page 47 / 52

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

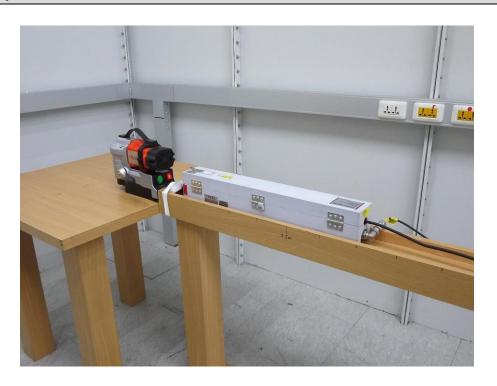
TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

| Networks  |            |      |          |            |            |
|-----------|------------|------|----------|------------|------------|
| EMC clamp | EMCLioncel | EFTC | 18071802 | 02/15/2024 | 02/14/2025 |

| Surge immunity             |              |            |            |                  |            |  |  |
|----------------------------|--------------|------------|------------|------------------|------------|--|--|
| Instrument                 | Manufacturer | Model No.  | Serial No. | Calibration Date | Valid Date |  |  |
| Surge controller           | EMCLioncel   | SCU-614A+  | 0180202    | NA               | NA         |  |  |
| Surge generator            | EMCLioncel   | LSG-510CB+ | 0171101    | 02/16/2024       | 02/15/2025 |  |  |
| coupling Device<br>Network | EMCLioncel   | CDN-5310P  | 0180302    | 02/16/2024       | 02/15/2025 |  |  |

| Injected currents immunity |                       |              |               |                  |            |  |  |
|----------------------------|-----------------------|--------------|---------------|------------------|------------|--|--|
| Instrument                 | Manufacturer          | Model No.    | Serial No.    | Calibration Date | Valid Date |  |  |
| Signal generator           | Keysight              | N5171B       | MY57281132    | 3/12/2024        | 3/11/2025  |  |  |
| Power Amplifier            | fflight communication | NTWPA-4K0100 | 18103215      | NA               | NA         |  |  |
| 100W attunator             | JPT                   | JPTATT-03-6  | ATT17001      | 3/13/2024        | 3/12/2025  |  |  |
| Couple device network      | EMC Liconcel          | CDN-M5-32    | 181001        | 5/10/2023        | 5/9/2024   |  |  |
| Couple device network      | EMC Liconcel          | CDN-M3-16    | 181103        | 5/10/2023        | 5/9/2024   |  |  |
| Couple device network      | EMC Liconcel          | CDN-M2-16    | 018074        | 5/10/2023        | 5/9/2024   |  |  |
| EM Clamp                   | FRANKONIA             | EMCL-20      | 18101672-0113 | 5/10/2023        | 5/9/2024   |  |  |
| Power sensor               | Keysight              | U2004A       | MY57420018    | 3/12/2024        | 3/11/2025  |  |  |
| test software              | Audix                 | 12           | 20181211      | NA               | NA         |  |  |

| Voltage dips and short interruptions immunity |              |           |            |                  |            |  |  |
|-----------------------------------------------|--------------|-----------|------------|------------------|------------|--|--|
| Instrument                                    | Manufacturer | Model No. | Serial No. | Calibration Date | Valid Date |  |  |
| Power source                                  | N4L          | N4A30     | 91J-12901  | 02/15/2024       | 02/14/2025 |  |  |
| Voltage drop simulator                        | EMCLioncel   | VDS-1103  | 21101      | 02/15/2024       | 02/14/2025 |  |  |
| Adjust power module                           | EMCLioncel   | RGL-232   | 21101      | 02/15/2024       | 02/14/2025 |  |  |


**Report no.:** 6185625.50 Page 48 / 52

# 9 **ANNEX 3 - TEST PHOTOS**

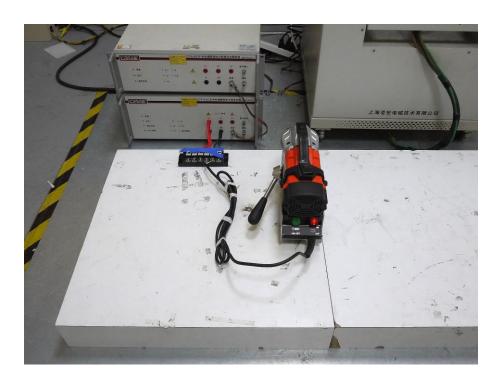




# **Disturbance power**



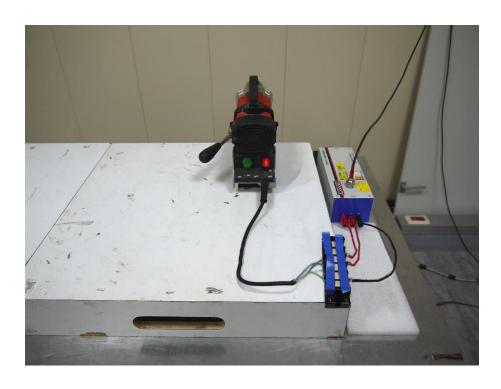
**Report no.:** 6185625.50 Page 49 / 52


# Harmonic current emissions & Voltage changes, voltage fluctuations and flicker



# **Electrostatic discharge immunity**




# **Fast transients**



# **Surges**



# Injected currents (radio-frequency common mode) immunity



# Voltage dips and short interruptions immunity



**End of the report**